

Provincia Regionale di Ragusa

Ammodernamento del tracciato stradale S.P. n. 46 ISPICA – POZZALLO I° STRALCIO FUNZIONALE

Responsabile Unico Procedimento

Dirigente Pianificazione del Territorio

Dott. Ing. Salvatore Dipasquale

1

0

REV.

GIUGNO 2014

MARZO 2014

DATA

Dott. Ing. Vincenzo Corallo

PROGETTO ESECUTIVO							
OGGETTO:	ARCHIVIO						
IDROLOGIA E IDRAULICA			PR147				
STUDIO IDROLOGICO E IDRAULICO	SCALA						
RELAZIONE IDROLOGICA	ELABORA ⁻	ГО	4.1.1				
GRUPPO DI PROGETTAZIONE A.T.I.	RESPONS SPECIALIS	SABILE DELLE IN STICHE	TEGRAZIONI				
TECHNITAL S.p.A (Mandataria)	Dott. Ing	. M. Raccosta					
I.R. ingegneri riuniti studio tecnico associato		ABILI DI PROGETT j. M. Raccosta	-o				
STUDIO STUDIO IUDICE S.r.l		j. G. Failla j. F. ludice					
3 NOVEMBRE 2014 EMISSIONE A SEGUITO ISTRUTTORIA ITALSOCOTEC del 27/10/2014	NOTARO	IUDICE A.	IUDICE F.				

NOTARO

NOTARO

NOTARO

REDATTO

IUDICE A.

A. IUDICE

A. IUDICE

CONTROLLATO

IUDICE F.

F. IUDICE F. IUDICE

APPROVATO

SETTEMBRE 2014 EMISSIONE A SEGUITO ISTRUTTORIA ITALSOCOTEC del 15/07/2014

EMISSIONE A SEGUITO ISTRUTTORIA ITALSOCOTEC del 18/04/2014

PRIMA EMISSIONE

DESCRIZIONE

RELAZIONE IDROLOGICA

AMMODERNAMENTO DEL TRACCIATO DELLA S.P. 46 ISPICA-POZZALLO PROGETTO ESECUTIVO

I° STRALCIO FUNZIONALE

INDICE

1.	PREN	1ESSA	4
2.	DESC	RIZIONE DEL PROGETTO	4
3.	LA D	OCUMENTAZIONE CONSULTATA	5
4.	DESC	RIZIONE DEL BACINO IDROGRAFICO	6
	L' AREA T	ERRITORIALE 084 DAL TORRENTE MODICA FINO A CAPO PASSERO	8
	4.1	Morfologia	9
	4.2	Idrografia	9
	4.3	Uso del suolo	10
	4.4	Analisi del rischio idraulico	11
5.	INDIN	/IDUAZIONE DELLE INTERFERENZE CON IL TRACCIATO	12
6.	ANAI	ISI IDROLOGICA	13
	SCELTA D	DEL MODELLO PROBABILISTICO: IL MODELLO T.C.E.V.	13
	SCELTA D	DEL MODELLO DI TRASFORMAZIONE AFFLUSSI/DEFLUSSI	23
	STIMA D	ELLE PORTATE AL COLMO NELLE INTERFERENZE CON IL RETICOLO IDROGRAFICO	25
		ONE DELLE PORTATE DI PROGETTO PER LE OPERE DI RACCOLTA E SMALTIMENTO DELLE ACQUE DI DRMA	26
	6.1	Definizione della portata di progetto per le canalette	28
	6.1.1	Definizione della portata di progetto per i fossi di guardia	29

1. PREMESSA

La presente relazione idrologica fornisce l'inquadramento idrologico del territorio e le caratteristiche del reticolo idrografico interferente con il progetto dell' ammodernamento del tracciato stradale S.P. n°46 Ispica- Pozzallo.

L'analisi idrologica è stata finalizzata alla stima delle massime portate di piena in corrispondenza delle sezioni di attraversamento ed alla stima delle portate di progetto del sistema di raccolta e smaltimento delle acque di piattaforma. A tal fine lo studio idrologico ha recepito le direttive, raccomandazioni e linee guida redatte in materia da Enti competenti sul territorio quali la Provincia, la Regione e l' Autorità di Bacino.

Nello specifico, il presente progetto esecutivo si riferisce alla realizzazione del I° Stralcio Funzionale che si sviluppa dalla sezione n°1 (km 0+000) e fino alla sezione n°9 (km 0+150,00) e dalla sezione n°57a (km 1+016.11) alla sezione n°76 (km 1+419.81), con la realizzazione del primo e del secondo svincolo di progetto.

Al fine di una compiuta comprensione dello studio idrologico redatto e delle successive scelte effettuate, si è deciso di riportare la descrizione di alcune parti relative al progetto complessivo sebbene non rientrino nel I Stralcio Funzionale.

2. DESCRIZIONE DEL PROGETTO

Il presente progetto ha come oggetto la realizzazione del I Stralcio Funzionale del progetto di ammodernamento del tracciato stradale S.P. n°46 Ispica – Pozzallo.

Il progetto definitivo prevedeva l'ammodernamento del tracciato della S.P. 46 Ispica-Pozzallo nel tratto compreso tra la S.S. 115 all'altezza del km 355+870, e il centro abitato di Pozzallo, nel tratto di competenza della Provincia Regionale di Ragusa.

Il suddetto tracciato stradale è compreso tra le isoipse 15 ÷ 56 m. s.l.m. circa e nel complesso ricade su un'area a debole pendenza che degrada di quota in direzione NE – SO da Contrada Poggio Tremiglia a Contrada Recupero - Scaro.

In base al progetto definitivo la strada può essere ripartita in tre tratti distinti che presentano una loro autonoma funzionalità:

- il primo tratto dal nodo Ispica alla prevista rotatoria di collegamento con la futura stazione autostradale (quest'ultima esclusa dalle previsioni di intervento), della lunghezza di 1+943.57km;
- il secondo tratto intermedio dalla rotatoria autostradale allo svincolo ASI (quest'ultimo già realizzato) della lunghezza di circa 1+600 km (1+572,19 km);
- il terzo tratto dallo svincolo ASI al nodo Pozzallo, della lunghezza di circa 1+800 km (1+812.45 km).

Il presente progetto esecutivo si riferisce alla realizzazione del I° Stralcio Funzionale che si sviluppa dalla sezione n°1 (km 0+000) e fino alla sezione n°9 (km 0+150,00) e dalla sezione n°57a (km 1+016.11) alla sezione n°76 (km 1+419.81), con la realizzazione del primo e del secondo svincolo di progetto.

In particolare, il I Stralcio Funzionale del progetto, prevede:

- la riconfigurazione a rotatoria del quadrivio all'incrocio con la ex SP n.86 Zappulla
 Scorrione Ispica;
- il rimodellamento plano-altimetrico in sede del tracciato, con demolizione e realizzazione ex novo del ponte sul torrente Salvia.
- la realizzazione di una vasca di prima pioggia per il trattamento delle acque di piattaforma prima della loro restituzione in un impluvio che si immette nell'alveo del Torrente Salvia.

3. LA DOCUMENTAZIONE CONSULTATA

Al fine di giungere alla definizione dell'assetto idrologico ed idraulico dell'area sottesa dall'opera oggetto di intervento è stata consultata la seguente documentazione:

- Cartografia Tecnica Regionale a scala 1:10.000;
- Rilievo aereofotogrammetrico tra il Km 1 ed il Km 8 del tracciato stradale, per una fascia di larghezza complessiva pari a circa 400 m.;
- Piano Stralcio di Bacino per l'Assetto Idrogeologico della Regione Sicilia Relazione generale

- Piano Stralcio di Bacino per l'Assetto Idrogeologico (P.A.I.) relativo all'Area territoriale tra il Torrente di Modica e Capo Passero (084)
- Cartografia della pericolosità idraulica in scala 1:10.000
- Cartografia litologica in scala 1:50.000
- Cartografia dell'uso del suolo in scala 1:50.000
- Studio geologico redatto dal 13°Settore Geologia della provincia di Ragusa relativo agli aspetti geologici, geomorfologici, idrogeologici e sismici dell'area che sarà interessata dai lavori in progetto e che è compresa all'incirca tra il Km 1 ed il Km 8 del tracciato stradale, per una fascia di larghezza complessiva pari a quattro chilometri.
- · Annali idrologici.

4. DESCRIZIONE DEL BACINO IDROGRAFICO

L'intera opera oggetto di intervento sottende parte di due bacini idrografici: quello del Torrente Salvia, nel tratto compreso all'incirca tra il Km 1 ed il Km 4, e quello del Bosco Pisana – Graffetta - Recupero, nel tratto compreso tra il Km 4 ed il Km 8.

Come riportato nella corografia dei bacini idrografici allegata 4.1.3, il bacino del torrente Salvia è stato suddiviso in tre sottobacini indipendenti (A2, A3, A4), infine è stato individuato un piccolo bacino A5 che drena le proprie acque in un piccolo impluvio che a sua volta interseca in corrispondenza del ramo dx dello svincolo n°1 l'opera in progetto e che pertanto è stato verificato.

Nello specifico, il I Lotto Funzionale oggetto del presente progetto esecutivo è direttamente interessato dai deflussi provenienti dai bacini A4 e A5

Le caratteristiche geometriche ed idrologiche dei bacini individuati sono state riportate in tabella 1.

BACINO	S	L	Н	Z	tc	% IMP	φ _{imp}	∮ _{perm}	φ
BACINO	km ²	km	m s.l.m.	m s.l.m.	ore				
A 1	7,14	3,3	95,8	13,0	2,15	0,30	0,80	0,40	0,52
A2	5,65	5,5	135,5	31,0	2,17	0,20	0,80	0,40	0,48
A3	1,83	1,5	109,9	31,2	1,08	0,20	0,80	0,40	0,48
A4	21,29	11,7	221,1	32,2	3,27	0,10	0,80	0,40	0,44
A5	0,77	1,1	119,3	55,0	0,80	0,10	0,80	0,40	0,44

Tabella 1: Caratteristiche geometriche ed idrologiche dei bacini idrografici

dove:

S = superficie totale del bacino in Km²;

L = lunghezza dell'asta principale in Km;

H = quota media del bacino in m s.l.m.;

Z = quota della sezione di chiusura in m s.l.m.

%IMP= percentuale della superficie impermeabile dell'area del bacino contribuente

□ *imp* = coefficiente di deflusso per le aree impermeabili

□ perm = coefficiente di deflusso per le aree non impermeabili

☑ = coefficiente di deflusso globale del bacino contribuente

In questa area si possono distinguere due zone morfologicamente differenziate. Una zona montana, dominio delle formazioni marine calcaree oligo-mioceniche in facies iblea; una zona pedemontana di aspetto collinare, dominio delle marne della Formazione Tellaro e dei sedimenti continentali delle conoidi di deiezione e di facies alluvionale e palustre quaternari.

La prima zona, a conformazione tabulare, rappresenta il bordo orientale dell'altipiano ibleo ed è caratterizzata da rilievi a gradinata con ripide scarpate strutturali, connesse a faglie normali, allineate secondo le principali direttici tettoniche NE – SO (allineamento Pozzallo - Ispica - Rosolini) e da profonde incisioni a V in corrispondenza dei valloni e cave tributarie della Cava D'Ispica - Torrente Favara, Torrente Salvia e della Cava Graffetta. Altre forme caratterizzanti corrispondenti a spianate di abrasione senza deposito, connesse a processi di terrazzamento marino di età medio pleistocenica, si riscontrano tra le quote 20 - 150 m. s.l.m. circa.

La zona pedemontana borda al piede gli affioramenti calcarei del plateau ibleo, seguendo l'allineamento strutturale della scarpata di faglia Pozzallo - Ispica - Rosolini, e mostra aspetto a morfologia ondulata, collinare, ed allo sbocco della Cava D'Ispica e del Torrente Salvia le caratteristiche configurazioni a ventaglio di paleo conoidi di deiezione disposte con apici posti dei paleo torrenti iblei nel mare pleistocenico. L'attuale reticolo idrografico prende origine da quei paleo torrenti e mostra pattern di tipo sub-angolare controllato dalla tettonica. Esso è costituito da corrosi d'acqua a regime torrentizio Tra essi i principali sono dati appunto, dal Torrente Salvia e dal torrente Graffetta..

I fattori di erosione attuale dipendono principalmente dall'azione chimica e meccanica delle acque di dilavamento e dei corsi d'acqua, dall'azione termica e dall'azione potenziale della forza di gravità lungo l'orlo delle scarpate fluviali incassate.

I bacini idrografici sottesi dall'opera in progetto, ricadono all'interno del più ampio bacino (084) che comprende i territori che vanno dal Torrente Modica fino a Capo Passero.

Di seguito si riporta una breve descrizione dell'area territoriale 084, estrapolata dal P.A.I., con riferimento all'aspetto morfologico ed idrografico del bacino nonché all'analisi del rischio idraulico presente.

L'area territoriale 084 dal Torrente Modica fino a Capo Passero

L'area territoriale compresa tra Torrente di Modica e Capo Passero, è localizzata nella porzione sud - orientale del versante meridionale della Sicilia ed occupa una superficie complessiva di 362,24 km².

L'area territoriale in esame ha una forma allungata in direzione NW – SE da C.da Sant'Angelo in territorio comunale di Modica fino alla costa mediterranea, nei pressi dell'abitato di Portopalo di Capo Passero.

I bacini con i quali confina sono, procedendo in senso orario, i seguenti:

- ad ovest con il bacino del Torrente di Modica;
- a nord con il bacino del Fiume Tellaro;
- ad est con l'area territoriale compresa tra Capo Passero e il F. Tellaro;
- a sud con il mare Mediterraneo;

Da un punto di vista amministrativo, l'area territoriale compresa tra il Torrente di Modica e Capo Passero, comprende i territori di n.2 province (Ragusa e Siracusa)

ed un totale di n.8 territori comunali (Ispica, Noto, Modica, Pachino, Portopalo di Capo Passero, Pozzallo, Rosolini e Scicli) di cui n.3 centri abitati (Ispica, Pozzallo e Portopalo di Capo Passero) ricadenti parzialmente o totalmente all'interno dell'area territoriale.

4.1 Morfologia

All'interno del territorio, è possibile distinguere due settori a diversa ampiezza, ma con caratteri morfologici univoci.

Un primo settore situato nella porzione più settentrionale ed in parte in quella centrale dell'area in studio, dove affiorano i depositi carbonatici della F.ne Ragusa, con morfologia irregolare e valli strette ed incise, denominate "cave".

Un secondo settore, che si presenta come un esteso pianoro, individuabile nella porzione meridionale dell'area territoriale, caratterizzato dalla netta predominanza dei livelli marnosi della F.ne Tellaro, delle biocalcareniti e delle marne calcaree del Pliocene, con paesaggi a blanda morfologia e valli ampie e poco incise.

Le piane alluvionali sono poco rappresentate e gli unici esempi, si hanno in corrispondenza dei pantani della zona Ispica – Pachino, oltre che alla foce dei torrenti che sfociano nel mar Mediterraneo, anche se di dimensioni ridotte. Alcune aste fluviali della zona studiata sono interessate da opere di canalizzazione ad uso irriguo.

4.2 Idrografia

L'area territoriale 084, impostata quasi esclusivamente su terreni calcari e argilloso – marnosi, è interessata da una serie di corsi d'acqua che presentano un regime torrentizio, con deflussi superficiali, principalmente nella stagione invernale, che avvengono in occasione di precipitazioni intense e di una certa durata. Per lunghi periodi tutti i torrenti si presentano completamente asciutti, soprattutto nella stagione estiva per via della scarsa piovosità e dell'alta temperatura che favorisce l'evaporazione.

Lo sviluppo del reticolo idrografico, che non si presenta molto ramificato, è direttamente influenzato dall'assetto strutturale del territorio, a conferma di ciò, la direzione delle varie aste fluviali coincide con sistemi tettonici di direzione NE-SW, in corrispondenza di fasce intensamente fratturate dai movimenti tettonici e dunque più erodibili.

Il deflusso superficiale è limitato, oltre che dalle cause climatiche, anche dalla discreta permeabilità delle formazioni affioranti, dovuta anche ad una serie di fratturazioni che facilitano l'infiltrazione delle acque piovane nel sottosuolo. L'idrografia è costituita da una serie di aste principali, delle quali solamente alcune presentano foce a mare; di seguito si elencano soltanto le principali:

- *Cava Trippatore*: si sviluppa all'incirca da quota 160 m s.l.m. nei pressi di C.da Passo di Salina fino al suo sbocco a mare ad Ovest dell'abitato di Marina di Modica;
- *Torrente Petraro*: si sviluppa all'incirca da quota 260 m s.l.m. nei pressi di C.da Zappulla, fino al suo sbocco a mare ad Est dell'abitato di Sampieri. Sono suoi affluenti: Cava Labbisi, Cava mele, Cava Cugno, Cava Labbisi;
- *Cava della Cisana*: si sviluppa all'incirca da quota 280 m s.l.m. nei pressi di C.se S. Maria, fino al suo sbocco a mare ad Est dell'abitato di Marina di Modica;
- Fosso Bufali Lavinaro: sviluppa all'incirca da quota 280 m s.l.m. nei pressi di C.sa Sbrizza, fino al suo sbocco a mare ad Est dell'abitato di Pozzallo nei pressi di C.da Santa Maria del Focallo. Sono suoi affluenti il Torrente Salvia, il Torrente Favara, Cava Scardina e Cava Salmata;
- *Torrente Lavinaro Bruno*: sviluppa all'incirca da quota 110 m s.l.m. nei pressi di Casale Modica, fino al suo sbocco a mare nei pressi di Marina della Marza. E' suo affluente il Torrente Carruba.

Sia il Torrente Fosso-Bufali-Lavinaro che il Torrente Lavinaro-Bruno, in concomitanza di piogge abbondanti alimentano alcuni dei pantani presenti nella zona.

4.3 Uso del suolo

Relativamente all'analisi dell'uso del suolo si è fatto riferimento alla carta dell'uso del suolo, realizzata dall'Assessorato Territorio ed Ambiente (Regione Siciliana - A.R.T.A., 1994 in scala 1:50.000).

Da tale carta si evince che, ad eccezione di alcune aree quali quelle urbanizzate ed alcune aree rocciose incolte, peraltro di modesta estensione, la gran parte del

territorio è sede di attività agricola, con indirizzo prevalentemente ortofrutticolo nella fascia costiera.

Le aree adibite a seminativo arborato si concentrano essenzialmente nel settore settentrionale dell'area territoriale, la zona occidentale è caratterizzata dalla presenza di vaste aree destinate a oliveti e legnose agrarie miste, mentre i mosaici colturali si concentrano essenzialmente nel settore orientale del territorio. A tratti un po' tutto il territorio è caratterizzato dalla presenza di vaste aree di seminativo semplice.

La fascia costiera che si sviluppa nella parte occidentale ed orientale del territorio in esame, viene per lo più sfruttata con coltivazioni in serra e coltivazioni con il metodo a "tendone" dei vigneti.

4.4 Analisi del rischio idraulico

L'individuazione e la perimetrazione delle aree a rischio idraulico è stata eseguita nel P.A.I. dopo una preliminare caratterizzazione dell'ambiente fisico. In tale fase sono stati individuati il reticolo idrografico ed i limiti dei bacini e si è effettuata una prima caratterizzazione delle aste fluviali. Contemporaneamente, si sono acquisiti tutti gli elementi conoscitivi utili all'individuazione delle aree potenzialmente inondabili attraverso informazioni storiche e analisi di tipo territoriale.

Sulla base degli eventi accaduti in passato ovvero sulla oggettiva constatazione di situazioni di pericolo derivanti dalla presenza di infrastrutture interferenti con la rete idrografica si sono perimetrate le aree soggette ad inondazione e si è valutato il rischio tenendo conto dei Danni subiti dai beni insistenti sull'area.

L'analisi territoriale per l'area in studio è stata condotta utilizzando la Carta Tecnica Regionale a scala 1:10.000 e con l'ausilio delle ortofoto della Regione Siciliana (A.R.T.A.).

Attraverso la loro osservazione, le segnalazioni di eventi accaduti, e mediante i sopralluoghi svolti si sono individuati i siti di potenziale rischio.

Lo studio geomorfologico ha inoltre messo in evidenza tutti gli elementi che possono segnalare aree potenzialmente inondabili quali andamento plano-altimetrico dell'alveo, presenza di depositi alluvionali conseguenti a fenomeni di trasporto solido, evidenze relative a precedenti tracce di esondazione, ecc..

La perimetrazione delle aree potenzialmente allagabili, condotta nel P.A.I. e riportata nella carta delle pericolosità idraulica a scala 1:10.000, non evidenzia alcuna

area a rischio idraulico ricadente all'interno del bacino idrografico sotteso dall'opera oggetto di intervento.

5. INDIVIDUAZIONE DELLE INTERFERENZE CON IL TRACCIATO

La caratterizzazione della rete idrografica superficiale è stata condotta facendo riferimento alla corografia dei bacini idrografici, individuando per ciascun bacino la corrispondente sezioni di chiusura.

Per la definizione delle principali caratteristiche idrologiche dei corsi d'acqua e dei bacini idrografici sottesi (area, lunghezza dell'asta principale, quota di riferimento, ecc..); è stata utilizzata la cartografia tecnica regionale 1:10.000.

Con riferimento alla corografia dei bacini idrografici sono state individuate le interferenze tra il reticolo idrografico e l'infrastruttura in progetto.

In particolare, con riferimento al I Lotto Funzionale, in corrispondenza delle suddette interferenze sono presenti i seguenti attraversamenti:

- attraversamento del torrente Salvia con un ponte con luce 22.25m x 3.30m e per un tratto lungo 19m, in progetto si trovano alle progressive 1+253.37, che costituisce la sezione di chiusura del bacino A4.
- attraversamento mediante tombino scatolare delle dimensioni di 2m x 2m x 14 m, da realizzare in corrispondenza del ramo dx dello svincolo n°1 (svincolo presente tra la progressiva 50.00 e la progressiva 100.00), che costituisce la sezione di chiusura del bacino A5.

Per l'analisi idrologica dell'area sono state individuate le stazioni dotate di pluviometro registratore nell'area di interesse. Per tali stazione sono stati raccolti i dati delle piogge di breve durata (compresa tra 10 minuti e 24 ore) e notevole intensità.

In tal modo, gli obiettivi perseguiti sono stati:

- la stima, in corrispondenza delle interferenze con il reticolo idrografico, delle portate al colmo di eventi di piena con tempi di ritorno 100, 200 e 500 anni;
- la definizione delle portate di progetto per differenti tempi di ritorno da adottarsi per il dimensionamento delle opere di raccolta e smaltimento delle acque di piattaforma (fossi di guardia, canalette, cunette, ecc.)

6. ANALISI IDROLOGICA

Scelta del modello probabilistico: il modello T.C.E.V.

Obiettivo principale dello studio di seguito illustrato è la valutazione delle portate al colmo di piena che possono defluire, nelle sezioni del reticolo idrografico in esame, con assegnato periodo di ritorno T.

In via più dettagliata, i valori della portata Q_T , corrispondenti al periodo di ritorno T, possono essere stimati a partire da una relazione del tipo:

$$Q_T = \xi_Q \bullet K_T$$
 (1)

dove:

 ξ_Q e' un parametro centrale della distribuzione di probabilità della variabile idrologica Q, massimo annuale della portata istantanea (ad es.: la media, la mediana, il valore modale, etc.)

 K_T e' un coefficiente amplificativo, denominato coefficiente di crescita col periodo di ritorno T espresso dalla relazione

$$K_{T} = K_{T} (T)$$
(2)

che dipende, per una data regione omogenea rispetto alle portate al colmo di piena, solo dal particolare modello probabilistico adottato e dallo specifico parametro ξ_O preso a riferimento.

Una stima sufficientemente attendibile del parametro ξ_Q può essere effettuata, a causa della sua scarsa variabilità campionaria, già in base a pochi dati. Viceversa, l'affidabilità della stima dei parametri contenuti nell'espressione di K_T e, quindi, l'attendibilità della stima di K_T , risulta fortemente influenzata dal ridotto numero di dati generalmente a disposizione. Di conseguenza, mentre la valutazione di K_T può essere effettuata solo in base ad un'analisi regionale, condotta su due distinti livelli (I e II Livello di analisi regionale), la valutazione del parametro ξ_Q va effettuata tenendo conto, soprattutto, delle peculiarità proprie dello specifico bacino preso in esame (analisi regionale di III Livello).

Nel caso in esame, per la scarsità dei dati di portata disponibili e per la molteplicità dei parametri da introdurre in eventuali legami di regressione tra il

valore di ξ_Q e le caratteristiche climatiche e fisiografiche dei bacini, risulta praticamente impossibile procedere ad un'analisi regionale di III Livello.

L'alternativa a tale analisi consiste nel ricorrere ad una tecnica basata sull'accoppiamento di un adeguato modello di trasformazione afflussi/deflussi con un processo di massimizzazione (approccio variazionale). La metodologia utilizzata fa riferimento a quella proposta su scala nazionale dal progetto VAPI del Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche (GNDCI). In particolare viene adottato un modello probabilistico a doppia componente (TCEV) che interpreta gli eventi massimi annuali come il risultato di una miscela di due popolazioni distinte di eventi (eventi massimi ordinari ed eventi massimi straordinari).

Le elaborazioni relative alla applicazione di tale modello fanno riferimento ad una procedura di regionalizzazione gerarchica in cui i parametri vengono valutati a scale regionali differenti, in funzione dell'ordine statistico.

Relativamente al valore da assegnare al periodo di ritorno T si è fatto riferimento a quanto disposto dalla legge n. 267 del 1998 (*Conversione in legge, con modificazioni, del decreto-legge 11 giugno 1998, n. 180, recante misure urgenti per la prevenzione del rischio idrogeologico ed a favore delle zone colpite da disastri franosi nella regione Campania*) e dal DPCM del 29/09/98 (*Atto di indirizzo e coordinamento per l'individuazione dei criteri relativi agli adempimenti di cui all'art. 1, commi 1 e 2 del decreto legge 11 giugno 1998 n.180"(G.U. 5 gennaio 1999,Serie generale, n.3). In particolare, detta normativa prescrive tre classi di valori per i tempi di ritorno T (T=20-50 anni; T=100- 200 anni; T=300-500 anni) e nel presente studio si e' fatto riferimento ai valori di 25 anni, 50 anni, 100 anni, 200 anni e 500 anni.*

La stima dei massimi istantanei di una variabile aleatoria (altezza di pioggia, intensità di pioggia, portata di piena, etc.) corrispondenti ad assegnati valori del periodo di ritorno T può essere effettuata attraverso una metodologia di tipo probabilistico con diversi tipi di approcci. Tra questi, vengono spesso utilizzati il modello di Gumbel e il modello T.C.E.V. Il modello di Gumbel, molto diffuso in campo tecnico, quando applicato all'analisi dei massimi annuali delle altezze di pioggia o delle portate al colmo di piena tende a sottostimare i valori più elevati osservati nel passato (valori corrispondenti ai periodi di ritorno più elevati).

Il modello T.C.E.V. (Two Components Estreme Value) risulta maggiormente rispondente alle esigenze di un'attenta valutazione delle altezze di pioggia o delle portate al colmo di piena che possono defluire nei tronchi di un corso d'acqua.

Di fatto, il modello T.C.E.V. costituisce una generalizzazione del modello di Gumbel. Esso risulta, infatti, costituito dal prodotto di due leggi di Gumbel, la prima

delle quali destinata ad interpretare e descrivere, in chiave probabilistica, i massimi valori ordinari e, la seconda, quelli straordinari (aventi, secondo il classico modello di Gumbel., una probabilità di superamento inferiore del 5% e, quindi, tali da potersi ritenere eccezionali).

La distribuzione di probabilità legata a tale modello ha un'espressione del tipo:

$$P(h) = exp \left[-\lambda_1 exp \left(\frac{-h}{\theta_1} \right) - \lambda_2 exp \left(\frac{-h}{\theta_2} \right) \right]$$

in cui P(h) è la probabilità di non superamento della variabile idrologica x (pioggia di fissata durata) mentre λ_1 , λ_2 , θ_1 , θ_2 sono i quattro parametri della legge. Il modello TCEV, in definitiva, equivale al prodotto di due leggi di distribuzione di Gumbel.

Dopo opportune trasformazioni dei parametri λ_1 , λ_2 , θ_1 , θ_2 il modello TCEV può esprimersi come:

$$P(h') = exp \left[-\lambda_{l} (exp \alpha)^{-h'} - \Lambda^{*} \lambda_{l}^{l/\Theta^{*}} \left(exp \left(\frac{\alpha}{\Theta^{*}} \right) \right)^{-h'} \right]$$

in cui h' è la variabile idrologica adimensionalizzata rispetto alla sua media $h'=h/\mu$.

Il modello TCEV essendo però una legge a quattro parametri necessita di un'indagine di tipo regionale. Cannarozzo et al. hanno condotto un'analisi basata su tre livelli di scala.

Nel primo livello di regionalizzazione sono stati utilizzati i dati di piogge intense di tutte le stazioni pluviografiche siciliane per calcolare i parametri Λ^* e Θ^* in funzione della durata. Nel secondo livello di regionalizzazione la Sicilia è stata suddivisa in 3 sottozone A, B e C (vedi figura 1) e per ciascuna di queste sono stati calcolati i parametri α ed λ_1 in funzione della durata.

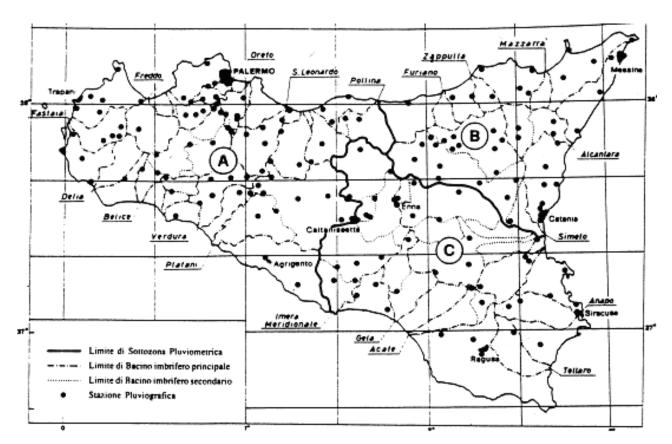


Figura 1: Carta delle sottozone pluviometriche omogenee (Cannarozzo, D'Asaro, Ferro)

I risultati di tali analisi hanno portato alle seguenti espressioni della pioggia intensa adimensionalizzata di fissata durata t e di fissato tempo di ritorno T:

Sottozona A:
$$h_{t,T}^{'}=0.5391-0.001635\,t+(0.0002212\,t^2+0.00117\,t+0.9966\,)\log T$$
 Sottozona B:
$$h_{t,T}^{'}=0.5135-0.002264\,t+(0.0001980\,t^2+0.00329\,t+1.0508\,)\log T$$
 Sottozona C:
$$h_{t,T}^{'}=0.5015-0.003516\,t+(0.000372\,t^2+0.00102\,t+1.0101\,)\log T$$

L'equazione della curva di probabilità pluviometrica $h_{t,T}$ si ottiene moltiplicando ciascuna delle espressioni sopra riportate per la legge di variazione della media con la durata:

$$h_{t,T} = h_{t,T}^{'} \mu(t)$$

Per ciascuna delle 172 stazioni pluviografiche siciliane che vantano almeno 10 anni di funzionamento continuo, la media è esprimibile in funzione della durata secondo la legge monomia:

$$\mu(t) = at^n$$

in cui α ed n sono coefficienti caratteristici di ognuna delle stazioni.

Tale risultato consente di definire le curve di probabilità pluviometrica C.P.P. mediante i soli valori dei due parametri a ed n, piuttosto che ricorrendo ai cinque valori della media corrispondenti alle durate di 1, 3, 6, 12 e 24 ore.

DATI UTILIZZATI:

Così come si evince dalla pubblicazione "Un modello regionale per la determinazione delle curve di probabilità pluviometrica del territorio siciliano" (M. Cannarozzo, F. D'Asaro, V. Ferro) che si allega in appendice alla presente relazione, sono stati raccolti ed archiviati i valori massimi annuali delle altezze di pioggia di durata pari ad 1, 3, 6, 12 e 24 ore relativi alle 172 stazioni pluviografiche siciliane, equamente distribuite nella regione, che vantano un funzionamento di almeno 10 anni nel periodo di osservazione che va dal 1928 al 1981. La dimensione delle serie storiche, variabile da 10 a 45 anni, è mediamente pari a 23 anni per un totale, nel complesso delle durate, di circa 20.000 dati.

ELABORAZIONI E RISULTATI:

Per tutte le 172 stazioni pluviografiche sono stati, quindi, valutati i valori di a ed n da inserire nell'espressione della media $\mu(t) = at^n$ che si riportano qui di seguito:

GRUPPO DI PROGETTAZIONE

Ammodernamento del tracciato stradale S.P. n. 46 ISPICA – POZZALLO I° STRALCIO FUNZIONALE

Tabella IV — Valori delle costanti a ed n della (23) per le stazioni pluviografiche siciliane

			Т	T
Cod.	Stazione	Bacino di appartenenza	a	n
1	Moniforte S. Giorgio	Niceto	35,9	0,3391
2	Milazzo	tra Muto e Mela	30,3	0,2208
3	Castroreale	Longano	27,4	0,4470
4	Montalbano Elicona	Mazzarrà	26,2	0,4255
:5	Tindlari	tra Mazzarà e Timeto	26,5	0,2977
6	S. Piero Patti	Timeto	28,3	0,3369
7	Capo d'Orlando	tra Naso e Zappulla	20,5	0,2934
8	Tortorici	Zappulla	28,4	0,3347
9	Alcara Li Fusi	Rosmarino	23,2	0,3970
10	Sanfratello	Inganno	21,9	0,3723
11	S. Stefano di Camastra	S. Stefano	26,7	0,2560
12	Castelbuono	Pollina	25,6	0,3451
13	Isnello	Pollina	25,0	0,4109
14	Cefalù	Pollina	27,3	0,2827
115	Collesano	Roccella	28,1	0,3880
16	Caltavuturo	Imera: Settentrionale	20,4	0,4252
17	Giioia (fattoria)	Torto	20,5	0,3147
18	Termini Imerese	tra Torto e S. Leonardo	30,5	0,2635
19	Imbriaca	S.Leonardo	22,6	0,3567
20	Vicari	S. Leonardo	22,5	0,3205
21	Campofelice di Fitalia	S. Leonardo	22,9	0,22:44
22	Mezzoiuso	S. Leonardo	20.6	0,3415
23	Sambuchi	S. Leonardo	19.5	0,3172
24	Čaccamo	S. Leonardo	22,0	0,3414
25	Ciminna	S. Leonardo	20,8	0,3529
26	Monumentale	S. Leonardo	29,3	0,2608
27	Turdiepi (fattoria)	Eluterio	21,6	0,3511
28	Lupo	Eleuterio	24,9	0,2819
29	Ficuzza	Eleuterio	22,2	0,3088
30	Ficuzza bosco	Eleuterio	24,1	0,3066
31	Marineo	Eleuterio	_	_
32	Risalaimi		27,4	0,2979
33	Misilmeri	Eleuterio	24,9	0,3272
34		Eleuterio	21,0	0,3054
35	Pioppo	Oreto	27,4	0,40:32
	Altofonte	Oreto	25,0	0,3567
36	Romitello S. Martino della Sasta	tra Oreto e Giancaldara	30,1	0,2972
-	S. Martino delle Scale	tra Oreto e Giancaldara	28,2	0,3327
38	Monte Pellegrino	tra Oreto e Giancaldara	29,5	0,2733
39	Partinico	tra Oreto e Giancaldara	21,2	0,3120
40	Palermo Ist. Zoot.	tra Oreto e Giancaldara	25,1	0,2928
41	Palermo Serv. Idr.	tra Oreto e Giancaldara	28,7	0,3143
42	Palermo Oss. Astr.	tra Oreto e Giancaldara	22,2	0,2687
43	Palermo Ist. Cast.	tra Oreto e Giancaldara	23,2	0,3119
44	Isola delle Femmine	tra Oreto e Giancaldara	21,7	0,2968
45	Ginestra	Giancaldara	27,9	0,3874
46	S.Giuseppe Jato	Giancaldara	25,3	0,2836
47	Fellamonica	Giancaldara	26,9	0,3149
48	Calatafimi	S. Bartolomeo	21,1	0,3158
49	Specchia	tra S. Bartolomeo e Birgi	22,0	0,2230
50	Lentina	tra S. Bartolomeo e Birgi	29,7	0,2693
51	S. Andrea dii Bonagia	tra S. Bartolomeo e Birgi	29,4	0,2605
52	Trapani	tra S. Bartolomeo e Birgi	24,9	0,2837
53	Castellamare del Golfo	tra S. Bartolomeo e Birgi	20,3	0,2634
54	Capo S. Vito	tra S. Bartolomeo e Birgi	17,6	0,2804
55	Fastaia	Birgi	21,3	0,2548
56	La Chinea	Birgi	27,8	0,2079
57	S. Giorgio	Birgi	20,2	0,2469
58	Borgo Fazio	Birgi	23,6	0,2145

Birgi Nuovo Birgi 29,1 0,2996	_		T	_	
Ciaulo Mazaro 33,4 0,1466	Cod.		Bacino di appartenenza	а	-
Marsala Mazaro 30,4 0,232	-			-	0,2398
62 Mazzara del Vallo tra Mazzaro e Arena 29,5 0,242* 63 Partanna Modione 26,7 0,229* 64 Castelvetrano Modione 24,7 0,259* 65 Piana degli Albanesi Belice 21,7 0,422* 66 Casa Dingoli Belice 25,7 0,402* 67 S. Cristina Gela Belice 22,4 0,394* 68 Piana dei Greci M. Belice 22,4 0,394* 69 Piana dei Greci M. Belice 22,4 0,499* 70 Tagliavia Belice 23,8 0,187* 71 Carlone Belice 20,8 0,288* 72 Rocamena Belice 21,8 0,288* 73 Gibellina Belice 21,8 0,284* 75 S. Margherita Belice Belice 24,6 0,241* 75 S. Sangherita Belice Belice 24,6 0,221* 76 Sciacca					0,1463
63 Partanna Modione 26,7 0,292 64 Castelvetrano Modione 24,7 0,259 65 Piana degli Albanesi Belice 21,7 0,412 66 Casa Dingoll Belice 22,4 0,334 67 S. Cristina Gela Belice 24,5 0,334 68 Piana dei Greci M. Belice 24,4 0,438 69 Piana dei Greci P. Belice 23,6 0,197 70 Tagliavia Belice 23,6 0,197 71 Corloone Belice 23,6 0,298 72 Roccamena Belice 21,8 0,258 73 Gibellina Belice 21,8 0,258 74 Montevago Belice 21,8 0,258 75 S. Margherita Belice Belice 25,5 0,229 76 Sciacca tra Carboi e Verdura 20,2 0,208 77 Galtabeliotta tra Carboi e Ver	-		Mazaro	-	0,2325
64 Castelvetrano Modione 24,7 0,259 65 Piana degli Albanesi Belice 21,7 0,4126 66 Casa Dingoli Belice 25,7 0,4026 67 S. Cristina Gela Belice 22,4 0,3446 68 Piana dei Graci P. Belice 24,4 0,4394 69 Piana dei Graci P. Belice 23,8 0,1877 70 Tagliavia Belice 23,8 0,1877 71 Carleone Belice 20,8 0,2886 72 Roccamena Belice 19,6 0,2337 73 Gibellina Belice 25,5 0,2286 75 S. Margherita Belice Belice 25,5 0,2286 76 Sciacca tra Carboi e Verdura 28,3 0,2697 77 Caltabellotta tra Carboi e Verdura 28,2 0,3368 80 Palazzo Adriano Verdura 26,2 0,3368 81 Chiusa Sc				29,5	0,2421
65 Piana degli Albanesi Belice 21,7 0,412t 66 Casa Dingoli Belice 25,7 0,402t 67 S. Cristina Gela Belice 24,5 0,383t 68 Piana dei Greci M. Belice 22,4 0,394t 69 Piana dei Graci P. Belice 23,8 0,1877 70 Tagliavia Belice 23,8 0,286t 71 Corleone Belice 23,8 0,287t 72 Roccamena Belice 12,8 0,286t 73 Gibellina Belice 24,6 0,244t 74 Montevago Belice 25,5 0,229t 75 S. Margherita Belice Belice 25,5 0,229t 76 Sciacca tra Carboi e Verdura 28,2 0,206t 77 Galtabellotta tra Carboi e Verdura 29,3 0,229t 78 Arancio Carboi e Verdura 29,0 0,36te 81 Chiusa	_			26,7	0,2927
66 Casa Dingoli Belice 25,7 0,402 67 S. Cristina Gela Belice 24,5 0,383 68 Piana dei Greci M. Belice 22,4 0,384 69 Piana dei Greci P. Belice 23,8 0,1875 70 Tagliavia Belice 20,8 0,288 71 Carleone Belice 20,8 0,288 72 Roccamena Belice 21,8 0,284 73 Gilbellina Belice 21,8 0,284 75 S. Margherita Belice Belice 34,6 0,244 75 S. Margherita Belice Belice 34,6 0,244 76 Sciacca tra Carboi e Verdura 25,5 0,286 77 Caltabellotta tra Carboi e Verdura 26,2 0,336 78 Arancio Carboi 26,4 0,211 79 Piano del Leone Verdura 25,2 0,368 80 Palazzo Adrirano				-	0,2596
67 S. Cristina Gela Belice 24,5 0,333 68 Piana dei Greci M. Belice 22,4 0,394 69 Piana dei Greci M. Belice 22,4 0,394 70 Tagliavia Belice 23,8 0,197 71 Corleone Belice 20,8 0,298 72 Roccamena Belice 21,8 0,258 73 Gilbellina Belice 21,8 0,258 74 Montevago Belice 21,8 0,258 75 S. Margherita Belice Belice 25,5 0,2296 76 Sciacca tra Carboi e Verdura 28,0 0,269 77 Caltabellotta tra Carboi e Verdura 28,2 0,216 79 Piano del Leone Verdura 25,2 0,3616 80 Palazzo Adriano Verdura 28,8 0,3318 81 Chiusa Sclafani Verdura 29,5 0,2667 83 S. Stefano di Quis				-	0,4126
68 Piana dei Greci M. Belice 22,4 0,3944 69 Piana dei Greci P. Belice 24,4 0,4398 70 Tagliavia. Belice 23,8 0,1873 71 Corleone Belice 20,8 0,2864 72 Roccamena Belice 21,8 0,2584 73 Gibellina Belice 21,8 0,2584 75 S. Margherita Belice Belice 25,5 0,2294 75 S. Margherita Belice Belice 25,5 0,2296 77 Caltabellotta tra Carboi e Verdura 20,2 0,2417 78 Arancio Carboi 26,4 0,2115 79 Piano del Leone Verdura 25,2 0,3308 80 Palazzo Adriano Verdura 25,2 0,3368 81 Chiusa Sclafani Verdura 29,5 0,2661 83 S. Stefano di Quisquina Magazzolo 27,6 0,4230 84 Bivon				-	0,4020
69 Piana dei Greci P. Belice 24,4 0,4394 70 Tagliavia. Belice 23,8 0,1873 71 Corleone Belice 20,8 0,2864 72 Roccamena Belice 19,6 0,2384 73 Gibellina Belice 21,8 0,2584 74 Montevago Belice 25,5 0,2441 75 S. Margherita Belice Belice 25,5 0,2294 76 Sciacca tra Carboi e Verdura 28,3 0,2694 77 Callabellotta tra Carboi e Verdura 28,0 0,2617 78 Arancio Carboi 26,4 0,2115 79 Piano del Leone Verdura 26,9 0,3616 80 Palazzo Adriano Verdura 28,8 0,3318 81 Chiusa Sclafani Verdura 29,5 0,2661 83 S. Stefano di Quisquina Magazzolo 27,6 0,4230 84 Biurgi				<u> </u>	0,3835
70 Tagliavia. Belice 23,8 0,1873 71 Corleone Belice 20,8 0,286 72 Roccamena Belice 19,6 0,283 73 Gibellina Belice 21,8 0,254 74 Montevago Belice 25,5 0,228 75 S. Margherita Belice Belice 25,5 0,228 76 Sciacca tra Carboi e Verdura 28,3 0,269 77 Caltabellotta tra Carboi e Verdura 28,3 0,269 79 Piano del Leone Verdura 25,2 0,366 80 Palazzo Adriano Verdura 28,3 0,368 81 Chiusa Sclafani Verdura 28,5 0,368 82 Burgio Verdura 28,5 0,368 83 S. Stefano di Quisquina Magazzolo 27,6 0,423 84 Bivona Magazzolo 25,8 0,3218 85 Lercara Friddi Pl	_			-	0,3940
71 Corleone Belice 20.8 0,288 72 Roccamena Belice 19.6 0,283 73 Gibellina Belice 21.8 0,2584 74 Montevago Belice 25.5 0,2264 75 S. Margherita Belice Belice 25.5 0,2267 76 Sciacca tra Carboi e Verdura 28.3 0,2864 77 Caltabellotta tra Carboi e Verdura 26.4 0,2717 78 Arancio Carboi e Verdura 25.2 0,3368 80 Palazzo Adriano Verdura 26.9 0,3616 81 Chiusa Sciafani Verdura 28.8 0,3318 82 Burgio Verdura 29.5 0,263 83 S. Stefano di Quisquina Magazzolo 27.6 0,423 84 Bivona Magazzolo 25.8 0,3218 85 Le Piane Platani 20.0 0,3083 86 Le Piane	_			-	
72 Roccamena Belice 19,6 0,233 73 Gibellina Belice 21,8 0,258 74 Montevago Belice 34,6 0,244 75 S. Margherita Belice Belice 25,5 0,2296 76 Sciacca tra Carboi e Verdura 28,3 0,2697 77 Caltabellotta tra Carboi e Verdura 28,4 0,2717 78 Arancio Carboi e Verdura 25,2 0,3368 80 Palazzo Adriano Verdura 26,2 0,3618 81 Chiusa Sciafani Verdura 29,5 0,2661 83 S. Stefano di Quisquina Magazzolo 27,6 0,423 84 Bivona Magazzolo 25,8 0,3218 85 Lerara Friddi Pitatani 20,5 0,423 86 Le Piane Pitatani 27,3 0,3048 87 Carcaciotto Pitatani 29,0 0,3083 88 Pitatani (dig				-	
73 Gibellina Belice 21,8 0,2584 74 Montevago Belice 34,6 0,2441 75 S. Margherita Belice Belice 25,5 0,2296 76 Sciacca tra Carboi e Verdura 28,3 0,2694 77 Caltabellotta tra Carboi e Verdura 30,4 0,2715 78 Arancio Carboi 26,4 0,2115 79 Piano del Leone Verdura 25,2 0,3368 80 Palazzo Adriano Verdura 26,9 0,3616 81 Chiusa Sclafani Verdura 29,5 0,2667 83 S. Stefano di Quisquina Magazzolo 27,6 0,423 84 Bivona Magazzolo 27,6 0,423 85 Lercara Friddi Piatani 20,6 0,2318 86 Le Piane Piatani 29,0 0,2341 89 Castroncovo di Sicilia Piatani 29,0 0,2344 89 Cast					0,2980
74 Montevago Belice 34,6 0,2441 75 S. Margherita Belice Belice 25,5 0,2296 76 Sciacca tra Carboi e Verdura 28,3 0,2694 77 Caltabellotta tra Carboi e Verdura 30,4 0,2717 78 Arancio Carboi 26,4 0,2118 80 Palazzo Adriano Verdura 26,9 0,3616 80 Palazzo Adriano Verdura 28,8 0,3318 81 Chiusa Sciafani Verdura 29,5 0,2661 82 Burgio Verdura 29,5 0,2661 83 S. Stefano di Quisquina Magazzolo 27,6 0,4230 84 Bivona Magazzolo 25,8 0,3018 85 Lercara Friddi Platani 20,6 0,0083 86 Le Piane Piatani 29,0 0,2347 88 Platani (diga) Piatani 24,0 0,3058 89 Castronovo d	_			100	-
75 S. Margherita Belice Belice 25.5 0,2296 76 Sciacca tra Carboi e Verdura 28.3 0,2694 77 Caltabellotta tra Carboi e Verdura 28.3 0,2694 77 Piano del Leone Verdura 28.4 0,2115 79 Piano del Leone Verdura 28.3 0,3616 80 Palazzo Adriano Verdura 28.3 0,3516 81 Chiusa Sciafani Verdura 28.8 0,3318 82 Burgio Verdura 29.5 0,2661 83 S. Stefano di Quisquina Magazzolo 27.6 0,4230 84 Bivona Magazzolo 25.8 0,3218 85 Lercara Friddi Platani 20.6 0,3084 86 Le Piane Platani 27.0 0,3048 87 Carcaciotto Piatani 27.5 0,303 88 Piatani (diga) Piatani 24.5 0,303 89 Ca				21,8	0,2584
76 Sciacca tra Carboi e Verdura 28,3 0,2894 77 Caltabellotta tra Carboi e Verdura 30,4 0,2777 78 Arancio Carboi 26,4 0,2115 79 Piano del Leone Verdura 25,2 0,3366 80 Palazzo Adriano Verdura 28,9 0,3516 81 Chiusa Sclafani Verdura 29,5 0,2667 82 Burgio Verdura 29,5 0,2667 83 S. Stefano di Quisquina Magazzolo 27,6 0,423 84 Bivona Magazzolo 25,8 0,3218 85 Lercara Friddi Piatani 20,6 0,3083 86 Le Piane Piatani 29,0 0,2347 87 Carcaciotto Piatani 29,0 0,2347 88 Le Piane Piatani 24,5 0,303 89 Castronovo di Sicilia Piatani 23,0 0,318 99 Casteltermilar </td <td></td> <td></td> <td></td> <td>-</td> <td>0,2441</td>				-	0,2441
77 Caltabellotta tra Carboi e Verdura 30,4 0,277 78 Arancio Carboi 26,4 0,2115 79 Piano del Leone Verdura 25,2 0,3366 80 Palazzo Adriano Verdura 26,9 0,3516 81 Chiusa Sclafani Verdura 28,8 0,3318 82 Burgio Verdura 29,5 0,603 84 Bivona Magazzolo 27,6 0,423 85 Lercara Friddi Platani 20,6 0,308 86 Le Piane Platani 27,3 0,308 87 Carcaciotto Platani 29,0 0,2347 88 Piatani (diga) Platani 24,5 0,3403 89 Castroncvo di Sicilia Platani 22,0 0,318 90 Castellermini Platani 22,0 0,318 91 S. Caterina Villarmosa Platani 24,6 0,2595 92 Valledolmo				-	0,2296
78 Arancio Carboi 26,4 0,2115 79 Piano del Leone Verdura 25,2 0,3366 80 Palazzo Adriano Verdura 26,9 0,3616 81 Chiusa Sciafani Verdura 28,8 0,3318 82 Burgio Verdura 29,5 0,2661 83 S. Stefano di Quisquina Magazzolo 25,8 0,3218 84 Bivona Magazzolo 25,8 0,3218 85 Lercara Friddi Piatani 20,0 0,0308 86 Le Piane Platani 27,0 0,308 87 Carcaciotto Piatani 29,0 0,2347 88 Piatani (diga) Piatani 23,5 0,3038 89 Castrelitermini Piatani 22,0 0,3118 90 Castellermini Piatani 22,0 0,3118 91 S. Caterina Villarmosa Piatani 22,0 0,3118 92 Valledolmo <				-	0,2694
Piano del Leone Verdura 25.2 0,3086			-	<u> </u>	0,2777
80 Palazzo Adriano Verdura 26,9 0,3616 81 Chiusa Sclafani Verdura 28,8 0,3318 82 Burgio Verdura 29,5 0,2667 83 S. Stefano di Quisquina Magazzolo 27,6 0,4238 84 Bivona Magazzolo 25,8 0,3218 85 Lercara Friddi Pitatani 20,6 0,3083 86 Le Piane Platani 27,3 0,3048 87 Carcaciotto Pitatani 29,0 0,2347 88 Pitatani (diga) Pitatani 23,5 0,3708 90 Castronovo di Sicilia Pitatani 22,0 0,3118 91 S. Caterina Villarmosa Pitatani 22,0 0,2155 92 Valledolmo Pitatani 29,0 0,3595 93 Marianopoti Pitatani 29,0 0,3594 94 Mussomelli Pitatani 29,0 0,3595 95 S. Biagio Pi	78	Arancio	Carboi	26,4	0,,2115
81 Chiusa Sciafani Verdura 28,8 0,3318 82 Burgio Verdura 29,5 0,2667 83 S. Stefano di Quisquina Magazzolo 27,6 0,4236 84 Bivona Magazzolo 25,8 0,3218 85 Lercara Friddi Platani 20,0 0,3088 86 Le Piane Platani 29,0 0,3403 87 Carcaciotto Platani 24,5 0,3403 89 Castronovo di Sicilia Platani 23,5 0,3708 90 Casterina Villarmosa Platani 22,0 0,3118 91 S. Caterina Villarmosa Platani 25,6 0,2518 92 Valledolmo Platani 29,2 0,2556 0,2518 93 Marianopoli Platani 19,2 0,3154 94 Mussomeli Platani 19,2 0,3154 95 S. Biagio Platani Platani 28,9 0,2606 97					0,,3369
82 Burgio Verdura 29,5 0,2661 83 S. Stefano di Quisquina Magazzolo 27,6 0,4230 84 Bivona Magazzolo 25,8 0,3218 85 Lercara Friddi Platani 20,6 0,3088 86 Le Piane Platani 29,0 0,2347 87 Carcaciotto Piatani 24,5 0,3008 89 Piatani (diga) Platani 24,5 0,3036 89 Castronovo di Sicilia Piatani 23,5 0,3708 90 Castellermini Piatani 22,0 0,3118 91 S. Caterina Villarmosa Piatani 25,6 0,2518 92 Valledolmo Piatani 24,6 0,2359 93 Marianopoti Piatani 29,0 0,3559 94 Mussomeli Piatani 28,0 0,3559 95 S. Biagio Piatani Piatani 28,7 0,2606 97 Palma di Montechiaro	80			26,9	0,,3616
83 S. Stefano di Quisquina Magazzolo 27,6 0,4230 84 Bivona Magazzolo 25,8 0,3218 85 Lercara Friddi Platani 20,6 0,3086 86 Le Piane Platani 27,3 0,3046 87 Carcaciotto Piatani 29,0 0,2347 89 Piatani (diga) Platani 24,5 0,3036 90 Castronovo di Sicilia Platani 22,0 0,3118 91 S. Caterina Villarmosa Platani 22,0 0,3118 91 S. Caterina Villarmosa Platani 29,0 0,359 92 Valledolimo Platani 29,0 0,359 93 Marianopoli Platani 19,2 0,359 94 Mussomelli Platani 28,0 0,359 94 Mussomelli Platani 28,7 0,2606 97 Palma di Montechiaro Palma 23,7 0,2465 97 Palma di M	_		10-00-0	28,8	0,,3318
84 Bivona Magazzolo 25.8 0,3216 85 Lercara Friddi Platani 20,6 0,3083 86 Le Piane Platani 27,3 0,3046 87 Carcaciotto Platani 29,0 0,2347 88 Platani (diga) Platani 24,5 0,3408 89 Castronovo di Sicilia Platani 22,0 0,3118 90 Casteltermini Platani 22,0 0,3118 91 S. Caterina Villarmosa Platani 25,6 0,2518 92 Valledolmo Platani 24,6 0,2955 93 Marianopoti Platani 28,7 0,2608 94 Mussomelli Platani 29,7 0,2605 95 S. Baglo Platani Platani 29,7 0,2465 97 Palma di Montechiaro Palma 23,7 0,2465 98 Petralia Sottana Imera Meridionale 23,6 0,3674 100 Enna <td></td> <td></td> <td></td> <td>29,5</td> <td>0,,2667</td>				29,5	0,,2667
85 Lercara Friddi Piatani 20,6 0,3083 86 Le Piane Piatani 27,3 0,3084 87 Carcaciotto Piatani 27,3 0,3048 88 Piatani (diga) Piatani 24,5 0,3403 89 Castroncvo di Sicilia Piatani 23,5 0,3708 90 Castelitermini Piatani 22,0 0,3118 91 S. Caterina Villarmosa Piatani 25,6 0,2518 92 Valledolmo Piatani 24,6 0,2958 93 Marianopoli Piatani 28,9 0,3359 94 Mussomelli Piatani 19,2 0,3184 95 S. Biagio Piatani Piatani 29,7 0,2608 96 Agrigento S. Leone 30,3 0,2485 97 Palma di Montechiaro Palma 23,7 0,2465 98 Petralia Sottana Imera Meridionale 23,6 0,3674 100 Enna	83	S. Stefano di Quisquina	Magazzolo	27,6	0,4230
86 Le Piane Platani 27,3 0,3046 87 Carcaciotto Platani 29,0 0,2347 88 Platani (diga) Platani 24,5 0,3403 89 Castronovo di Sicilia Platani 23,5 0,3708 90 Castelermini Platani 22,0 0,3118 91 S. Caterina Villarmosa Platani 22,0 0,3158 92 Valledolmo Platani 28,6 0,2959 93 Marianopoli Platani 29,9 0,3359 94 Mussomelli Platani 19,2 0,3154 95 S. Biagio Platani Platani 28,7 0,2808 96 Agrigento S. Leone 30,3 0,2485 97 Palma di Montechiaro Palma 23,7 0,2465 98 Petralia Sottana Ilmera Meridionale 23,6 0,3671 100 Enna Ilmera Meridionale 23,6 0,4012 101 Vil			Magazzolo	25,8	0,3218
87 Carcaciotto Platani 29,0 0,2347 88 Platani (diga) Platani 24,5 0,3403 89 Castronovo di Sicilia Platani 23,5 0,3708 90 Castelerina Villarmosa Platani 22,0 0,3118 91 S. Caterina Villarmosa Platani 25,6 0,2518 92 Valledolmo Platani 24,6 0,2955 93 Marianopoli Platani 19,2 0,3359 94 Mussemelli Platani 28,9 0,3359 95 S. Biagio Platani Platani 28,7 0,2808 96 Agrigento S. Leone 30,3 0,2485 97 Palma di Montechiaro Palma 23,7 0,2465 98 Petralia Sottana Ilmera Meridionale 23,6 0,3674 100 Enna Ilmera Meridionale 23,6 0,4012 101 Villadoro Ilmera Meridionale 26,5 0,2875 1	85		Platani	20,6	0,3083
88 Piatani (diga) Piatani 24,5 0,3403 89 Castronovo di Sicilia Piatani 23,5 0,3708 90 Casteltermini Piatani 22,0 0,3118 91 S. Caterina Villarmosa Piatani 25,6 0,2518 92 Valledolimo Piatani 24,6 0,2856 93 Marianopoli Piatani 29,0,358 94 Mussomelli Piatani 19,2 0,3154 95 S. Biagio Platani Piatani 28,7 0,2806 96 Agrigento S. Leone 30,3 0,2485 97 Palma di Montechiaro Palma 23,7 0,2465 98 Petralia Sottana Imera Meridionale 23,2 0,1771 100 Enna Imera Meridionale 23,2 0,4012 101 Villadoro Imera Meridionale 25,9 0,3448 102 Villarosa Imera Meridionale 28,1 0,2588 103 Ca	86	Le Piane	Platani	27,3	0,3046
89 Castronovo di Sicilia Piatani 23,5 0,3708 90 Castelitermini Piatani 22,0 0,3118 91 S. Caterina Villarmosa Piatani 25,6 0,2516 92 Valledolimo Piatani 24,6 0,2956 93 Marianopoti Piatani 28,9 0,3559 94 Mussomelli Piatani 19,2 0,3154 95 S. Biagio Piatani Piatani 28,7 0,2606 96 Agrigento S. Leone 30,3 0,2485 97 Palma di Montechiaro Palma 23,7 0,2465 98 Petralia Sottana Ilmera Meridionale 23,6 0,3674 100 Enna Ilmera Meridionale 23,2 0,1771 101 Villadoro Ilmera Meridionale 25,9 0,3486 102 Villarosa Ilmera Meridionale 28,1 0,2588 103 Caltanissetta (G.Civile) Ilmera Meridionale 28,2 0,30210 </td <td>87</td> <td></td> <td></td> <td>29,0</td> <td>0,2347</td>	87			29,0	0,2347
90 Castelitermini Pitatani 22,0 0,3118 91 S. Caterina Villarmosa Pitatani 25,6 0,2518 92 Valledolmo Pitatani 24,6 0,2955 93 Marianopoti Pitatani 28,9 0,3359 94 Mussomelli Pitatani 19,2 0,3168 95 S. Biagio Platani Pitatani 28,7 0,2808 96 Agrigento S. Leone 30,3 0,2485 97 Palma di Montechiaro Palma 23,7 0,2465 98 Petralia Sottana Imera Meridionale 23,6 0,3674 99 Capodarso Imera Meridionale 23,6 0,4012 100 Enna Imera Meridionale 25,9 0,3146 101 Villadoro Imera Meridionale 26,0 0,2875 103 Caltanissetta (G.Civile) Imera Meridionale 28,1 0,2588 105 Sommatino Imera Meridionale 28,2 0,3021	88		Platani	24,5	0,3403
91 S. Caterina Villarmosa Platani 25,6 0,2516 92 Valledolmo Piatani 24,6 0,2955 93 Marianopoli Piatani 28,9 0,3358 94 Mussomelli Piatani 19,2 0,3154 95 S. Blaglo Platani Piatani 28,7 0,2865 96 Agrigento S. Leone 30,3 0,2465 97 Palma di Montechiaro Palma 23,7 0,2665 98 Petralia Sottana Imera Meridionale 23,6 0,3674 100 Enna Imera Meridionale 23,6 0,3674 101 Villadoro Imera Meridionale 25,9 0,3146 102 Villarosa Imera Meridionale 26,6 0,2875 103 Caltanissetta (G.Civile) Imera Meridionale 28,1 0,2586 104 Pietraperzia Imera Meridionale 28,2 0,3021 105 Sommatino Imera Meridionale 28,2 0,2395 <	$\overline{}$			23,5	0,3708
92 Valledolimo Piatani 24,6 0,2955 93 Marianopoli Piatani 28,9 0,3359 94 Mussomelli Piatani 19,2 0,3154 95 S. Biagio Piatani Piatani 29,7 0,2405 96 Agrigento S. Leone 30,3 0,2465 97 Palma di Montechiaro Palma 23,7 0,2465 98 Petralia Sottana Imera Meridionale 23,6 0,3674 100 Enna Imera Meridionale 25,9 0,3146 101 Villadoro Imera Meridionale 26,5 0,2875 103 Caltanissetta (G.Civile) Imera Meridionale 28,1 0,2580 104 Pietraperzia Imera Meridionale 28,2 0,3021 105 Sommatino Imera Meridionale 28,2 0,3021 106 Riesi Imera Meridionale 28,4 0,2395 107 Ravanusa Imera Meridionale 28,4 0,2395				22,0	0,3118
93 Marianopoli Piatani 28,9 0,3359 94 Mussomelli Piatani 19,2 0,3454 95 S. Biagio Piatani Piatani 29,7 0,2808 96 Agrigento S. Leone 30,3 0,2485 97 Pallma di Montechiaro Palma 23,7 0,2465 98 Petralia Sottana Imera Meridionale 23,6 0,3674 100 Enna Imera Meridionale 30,6 0,4012 101 Villadoro Imera Meridionale 25,9 0,3146 102 Villarosa Imera Meridionale 26,6 0,2875 103 Cattanissetta (G.Civile) Imera Meridionale 28,1 0,2588 104 Pietraperzia Imera Meridionale 26,2 0,3021 105 Sommatino Imera Meridionale 26,2 0,3021 106 Rilesi Imera Meridionale 28,4 0,2395 107 Ravanusa Imera Meridionale 25,4 0,2395	_			25,6	0,2518
94 Mussomelli Piatani 19,2 0,3154 95 S. Biagio Platani Piatani 28,7 0,2808 96 Agrigento S. Leone 30,3 0,2485 97 Palma di Montechiaro Palma 23,7 0,2465 98 Petralia Sottana Imera Meridionale 23,6 0,3674 100 Enna Imera Meridionale 30,5 0,4012 101 Villadoro Imera Meridionale 25,9 0,3146 102 Villarosa Imera Meridionale 28,1 0,2588 103 Caltanissetta (G.Civile) Imera Meridionale 28,1 0,2588 104 Pietraperzia Imera Meridionale 28,2 0,3021 105 Sommatino Imera Meridionale 28,2 0,3021 106 Riesi Imera Meridionale 28,4 0,2395 107 Ravanusa Imera Meridionale 28,4 0,2395 108 Mangiaricotta Imera Meridionale 25,4 0	_			_	0,2955
95 S. Biagio Platani Piatani 28,7 0,2806 96 Agrigento S. Leone 30,3 0,2485 97 Palma di Montechiaro Palma 23,7 0,2465 98 Petralia Sottana Imera Meridionale 23,6 0,3674 99 Capodarso Imera Meridionale 32,2 0,1771 100 Enna Imera Meridionale 25,9 0,3146 101 Villadoro Imera Meridionale 25,9 0,3146 102 Villarosa Imera Meridionale 28,1 0,2588 103 Caltanissetta (G.Civile) Imera Meridionale 28,2 0,3021 104 Pietraperzia Imera Meridionale 28,4 0,2386 105 Sommatino Imera Meridionale 28,4 0,2395 106 Riesi Imera Meridionale 28,4 0,2395 107 Ravanusa Imera Meridionale 28,4 0,2395 108 Mangiaricotta Imera Meridionale 25,4	\rightarrow	Marianopoli	Platani	28,9	
96 Agrigento S. Leone 30,3 0,2485 97 Palma di Montechiaro Palma 23,7 0,2465 98 Petralia Sottana Imera Meridionale 23,6 0,3674 99 Capodarso Imera Meridionale 30,5 0,4012 100 Enna Imera Meridionale 25,9 0,3146 101 Villadoro Imera Meridionale 26,0 0,2675 102 Villarosa Imera Meridionale 26,0 0,2675 103 Caltanissetta (G.Civile) Imera Meridionale 28,1 0,2588 104 Pietraperzia Imera Meridionale 28,1 0,2100 105 Sommatino Imera Meridionale 28,2 0,3021 106 Filesi Imera Meridionale 28,4 0,2395 107 Ravanusa Imera Meridionale 25,4 0,2356 109 Deliella Imera Meridionale 25,4 0,2356 109 Deliella Imera Meridionale 31,9	_			_	_
97 Palma di Montechiaro Palma 23,7 0,2465 98 Petralia Sottana Imera Meridionale 23,6 0,3674 99 Capodarso Imera Meridionale 32,2 0,1771 100 Enna Imera Meridionale 25,9 0,3464 101 Villarosa Imera Meridionale 26,0 0,2675 103 Caltanissetta (G.Civile) Imera Meridionale 28,1 0,2588 104 Pietraperzia Imera Meridionale 28,1 0,2100 105 Sommatino Imera Meridionale 28,2 0,3021 106 Riesi Imera Meridionale 28,4 0,2395 107 Ravanusa Imera Meridionale 25,4 0,2356 108 Mangiaricotta Imera Meridionale 25,4 0,2356 109 Deliella Imera Meridionale 25,4 0,2356 110 Desusino Imera Meridionale 25,9 0,3045 111 Mazzarino Imera Meridionale 25,		S. Biagio Platani	Platani	28,7	0,2808
98 Petralia Sottana Imera Meridionale 23,6 0,3674 99 Capodarso Imera Meridionale 32,2 0,1771 100 Enna Imera Meridionale 30,6 0,4012 101 Villadoro Imera Meridionale 25,9 0,3146 102 Villadoro Imera Meridionale 26,6 0,2878 103 Caltanissetta (G.Civile) Imera Meridionale 28,1 0,2588 104 Pietraperzia Imera Meridionale 28,2 0,3021 105 Sommatino Imera Meridionale 26,2 0,3021 106 Riesi Imera Meridionale 28,4 0,2396 107 Ravanusa Imera Meridionale 25,4 0,2356 109 Deliella Imera Meridionale 25,4 0,2356 109 Desiella Imera Meridionale 36,5 0,2210 111 Mazzarino Imera Meridionale 31,9 0,2573 111 Mazzarino Imera Meridionale 25,9<	_			30,3	0,,2485
99 Capodarso Imera Meridionale 32,2 0,1771 100 Enna Imera Meridionale 30,6 0,4012 101 Villadoro Imera Meridionale 25,9 0,3146 102 Villarosa Imera Meridionale 26,6 0,2873 103 Caltanissetta (G.Civile) Imera Meridionale 28,1 0,2580 104 Pietraperzia Imera Meridionale 26,2 0,3021 105 Sommatino Imera Meridionale 26,2 0,3021 106 Rissi Imera Meridionale 28,4 0,2395 107 Ravanusa Imera Meridionale 25,4 0,2395 109 Deliella Imera Meridionale 25,4 0,2356 109 Desiella Imera Meridionale 36,5 0,2210 111 Mazzarino Imera Meridionale 25,9 0,3054 112 Comunelli (diga) Comunelli 25,9 0,3054 112 Comunelli (diga) Comunelli 29,8				23,7	
100	_		Imera Meridionale		
101 Villadoro Imera Meridionale 25,9 0,3146 102 Villarosa Imera Meridionale 26,6 0,2875 103 Caltanissetta (G.Civile) Imera Meridionale 28,1 0,2588 104 Pietraperzia Imera Meridionale 28,2 0,3021 105 Sommatino Imera Meridionale 26,2 0,3021 106 Riesi Imera Meridionale 28,4 0,2395 107 Ravanusa Imera Meridionale 28,4 0,2395 109 Mangiaricotta Imera Meridionale 25,4 0,2356 109 Deliella Imera Meridionale 36,5 0,2210 110 Desusino Imera Meridionale 25,9 0,3054 111 Mazzarino Imera Meridionale 25,9 0,3054 112 Comunelli (diga) Comunelli 30,1 0,1985 113 Gela 27,7 0,3346 114 Piazza Armerina Gela 27,7 0,3346 <	$\overline{}$			_	
102 Villarosa Imera Meridionale 25,6 0,2875 103 Caltanissetta (G.Civile) Imera Meridionale 28,1 0,2588 104 Pietraperzia Imera Meridionale 33,4 0,2100 105 Sommatino Imera Meridionale 26,2 0,3021 106 Riesi Imera Meridionale 28,4 0,2395 107 Ravanusa Imera Meridionale 28,4 0,2395 108 Mangiaricotta Imera Meridionale 25,4 0,2356 109 Deliella Imera Meridionale 36,5 0,2210 110 Desusino Imera Meridionale 31,9 0,2573 111 Mazzarino Imera Meridionale 25,9 0,3054 112 Comunelli (diga) Comunelli 30,1 0,1845 113 Gela 27,7 0,3346 114 Piazza Armerina Gela 27,7 0,3346 115 Diga Disueri Gela 15,9 0,3217				-	0,4012
103 Caltanissetta (G.Civile) Imera Meridionale 28,1 0,2588 104 Pietraperzia Imera Meridionale 33,4 0,2100 105 Sommatino Imera Meridionale 26,2 0,3021 106 Riesi Imera Meridionale 28,4 0,2395 107 Ravanusa Imera Meridionale 26,0 0,2050 108 Mangiariotta Imera Meridionale 25,4 0,2356 109 Deliella Imera Meridionale 36,5 0,2210 110 Desusino Imera Meridionale 25,9 0,3054 111 Mazzarino Imera Meridionale 25,9 0,3054 112 Comunelli (diga) Comunelli 30,1 0,1985 113 Geia tra Comunelli e Gela 29,8 0,1845 114 Piazza Armerina Gela 27,7 0,3346 115 Diga Disueri Gela 15,9 0,3217 116 Monterosso Acate 27,1 0,2715	-			_	0,3146
104 Pietraperzia Imera Meridionale 33,4 0,2100 105 Sommatino Imera Meridionale 26,2 0,3021 106 Riesi Imera Meridionale 28,4 0,2395 107 Ravanusa Imera Meridionale 36,0 0,2050 108 Mangiariotta Imera Meridionale 25,4 0,2356 109 Deliella Imera Meridionale 36,5 0,2210 110 Desusino Imera Meridionale 25,9 0,3054 111 Mazzarino Imera Meridionale 25,9 0,3054 112 Comunelli (diga) Comunelli 30,1 0,1985 113 Gela tra Comunelli 69,8 1,184 114 Piazza Armerina Gela 27,7 0,3346 115 Diga Disueri Gela 15,9 0,3217 116 Monterosso Acate 27,1 0,2715 117 Licodia Eubea Acate 28,6 0,2411	_			_	0,2875
105 Sommatino Imera Meridionale 26,2 0,3021 106 Riesi Imera Meridionale 28,4 0,2395 107 Ravanusa Imera Meridionale 36,0 0,2050 108 Mangiaricotta Imera Meridionale 25,4 0,2356 109 Deliella Imera Meridionale 36,5 0,2210 110 Desusino Imera Meridionale 25,9 0,3054 111 Mazzarino Imera Meridionale 25,9 0,3054 112 Comunelli (diga) Comunelli 30,1 0,1985 113 Geia tra Comunelli e Gela 29,8 0,1845 114 Piazza Armerina Gela 27,7 0,3346 115 Diga Disueri Gela 15,9 0,3217 116 Monterosso Acate 27,1 0,2715 117 Licodia Eubea Acate 28,6 0,2411	_			_	0,2588
106 Riesi Imera Meridionale 28,4 0,2395 107 Ravanusa Imera Meridionale 36,0 0,2050 108 Mangiaricotta Imera Meridionale 25,4 0,2356 109 Deliella Imera Meridionale 36,5 0,2210 110 Desusino Imera Meridionale 25,9 0,3054 111 Mazzarino Imera Meridionale 25,9 0,3045 112 Comunelli (diga) Comunelli 30,1 0,1985 113 Gela tra Comunelli e Gela 29,8 0,1845 114 Piazza Armerina Gela 27,7 0,3346 115 Diga Disueri Gela 15,9 0,3217 116 Monterosso Acate 27,1 0,2715 117 Licodia Eubea Acate 28,6 0,2411				_	0,2100
107 Ravanusa Imera Meridionale 36,0 0,2050 108 Mangiaricotta Imera Meridionale 25,4 0,2356 109 Deliella Imera Meridionale 36,5 0,2210 110 Desusino Imera Meridionale 31,9 0,2573 111 Mazzarino Imera Meridionale 25,9 0,3054 112 Comunelli (diga) Comunelli 30,1 0,1985 113 Gela tra Comunelli e Gela 29,8 0,1845 114 Piazza Armerina Gela 27,7 0,3346 115 Diga Disueri Gela 15,9 0,3217 116 Monterosso Acate 27,1 0,2715 117 Licodia Eubea Acate 28,6 0,2411	_				
108 Mangiaricotta Imera Meridionale 25,4 0,2356 109 Deliella Imera Meridionale 36,5 0,2210 110 Desusino Imera Meridionale 31,9 0,2573 111 Mazzarino Imera Meridionale 25,9 0,3054 112 Comunelli (diga) Comunelli 30,1 0,1845 113 Gela tra Comunelli e Gela 29,8 0,1845 114 Piazza Armerina Gela 27,7 0,3346 115 Diga Disueri Gela 15,9 0,3217 116 Monterosso Acate 27,1 0,2715 117 Licodia Eubea Acate 28,6 0,2411	_			_	0,2395
109 Deliella Imera Meridionale 36,5 0,2210 110 Desusino Imera Meridionale 31,9 0,2573 111 Mazzarino Imera Meridionale 25,9 0,3054 112 Comunelli (diga) Comunelli 30,1 0,1985 113 Gela tra Comunelli e Gela 29,8 0,1845 114 Piazza Armerina Gela 27,7 0,3346 115 Diga Disueri Gela 15,9 0,3217 116 Monterosso Acate 27,1 0,2715 117 Licodia Eubea Acate 28,6 0,2411				_	0,2050
110 Desusino Imera Meridionale 31,9 0,2573 111 Mazzarino Imera Meridionale 25,9 0,3054 112 Comunelli (diga) Comunelli 30,1 0,1985 113 Gela tra Comunelli e Gela 29,8 0,1845 114 Piazza Armerina Gela 27,7 0,3346 115 Diga Disueri Gela 15,9 0,3217 116 Monterosso Acate 27,1 0,2715 117 Licodia Eubea Acate 28,6 0,2411	_				0,2356
111 Mazzarino Imera Meridionale 25,9 0,3054 112 Comunelli (diga) Comunelli 30,1 0,1985 113 Gela tra Comunelli e Gela 29,8 0,1845 114 Piazza Armerina Gela 27,7 0,3346 115 Diga Disueri Gela 15,9 0,3217 116 Monterosso Acate 27,1 0,2715 117 Licodia Eubea Acate 28,6 0,2411	$\overline{}$			$\overline{}$	0,2210
112 Comunelli (diga) Comunelli 30,1 0,1985 113 Gela tra Comunelli e Gela 29,8 0,1845 114 Piazza Armerina Gela 27,7 0,3346 115 Diga Disueri Gela 15,9 0,3217 116 Monterosso Acate 27,1 0,2715 117 Licodia Eubea Acate 28,6 0,2411	\rightarrow			_	0,2573
113 Gela tra Comunelli e Gela 29,8 0,1845 114 Piazza Armerina Gela 27,7 0,3346 115 Diga Disueri Gela 15,9 0,3217 116 Moniterosso Acate 27,1 0,2715 117 Licodia Eubea Acate 28,6 0,2411	_			_	0,:3054
114 Piazza Armerina Gela 27,7 0,3346 115 Diga Disueri Gela 15,9 0,3217 116 Monterosso Acate 27,1 0,2715 117 Licodia Eubea Acate 28,6 0,2411	_			-	0,1985
115 Diga Disueri Gela 15,9 0,3217 116 Monterosso Acate 27,1 0,2715 117 Licodia Eubea Acate 28,6 0,2411	$\overline{}$			_	0,1845
116 Moniterosso Acate 27,1 0,2715 117 Licodia Eubea Acate 28,6 0,2411	$\overline{}$			-	0,:3346
117 Licodia Eubea Acate 28,6 0,2411	\rightarrow			_	0,3217
	$\overline{}$			-	0,2715
118 Vizzini Acate 21,0 0,2983	\rightarrow			_	$\overline{}$
	118	Vizzini	Acate	21,0	0,2983

Segue tabella IV

Cod.	Stazione	Bacino di appartenenza	а	n
119	Vittoria	Ippari	29,9	0,2345
120	Ragusa	Irminio	28,0	0,3213
121	Modica	Scicli	25,2	0,3232
122	Castelluccio	Tellaro	38,7	0,2956
123	Noto	Noto	32,5	0,3423
124	Melilli	Anapo	30,8	0,3305
125	Palazzolo Acreide	Апаро	27,6	0,3587
126	Presa S. Nicola	Anapo	29,7	0,4174
127	Siracusa	Anapo	32,3	0,2909
128	Augusta	Anapo	38,9	0,2975
129	Carlentini	Lentini	27,2	0,4573
130	Lentini città	Lentini	32,4	0,3698
131	Lentini bonifica	Lentini	38,3	0,3644
132	Maniaci	Simeto	17,6	0,2845
133	Buffali	Simeto	27,1	0,3123
134	Cesarò	Simeto	27,3	0,2578
135	Troina	Simeto	25,9	0,3697
136	Ancipa	Simeto	27,3	0,3390
137	Maletto	Simeto	25,6	0,2288
138	Bronte	Simeto	22,1	0,2777
139	Borgonuovo	Simeto	24,4	0,2854
140	Nicosia	Simeto	28,0	0,3676
141	Capizzi	Simeto	33,2	0,2511
142	Cerami	Simeto	28,2	0,2699
143	Salamone	Simeto	25,0	0,2680
144	Gagliano Castelferrato	Simeto	22,4	0,3448
145	Agira.	Simeto	24,8	0,3448

Cod	* Stazione	Basica di casastanta	Τ.	Ι.
146	Ragaina	Bacino di appartenenza	a a	n
147		Simeto	22,0	0,3930
	Centuripe	Simeto	20,8	0,4075
148	Adrano	Simeto	27,2	0,2734
149	Paternô	Simeto	25,3	0,2975
150	Simeto	Simeto	32,7	0,3312
151	. Leonforte	Simeto	31,1	0,2990
152	Valguarnera	Simeto	25,9	0,4093
153	Torricchia	Simeto	19,7	0,2941
154	Raddusa	Simeto	24,8	0,2522
155	Caltagirone	Simeto	25,0	0,2679
156	Mineo	Simeto	30,2	0,3149
157	Ramacca	Simeto	31,0	0,2769
158	Zafferana Etnea	Simeto	37,4	0,4879
159	Linguaglossa	Simeto	35,1	0,4473
160	Viagrande	Simeto	39,1	0,3516
161	Piedimonte Etneo	Simeto	35,8	0,3554
162	Acireale	Simeto	41,5	0,3455
163	Catania (G. Civile)	Simeto	32,3	0,3266
164	Catania Osservatorio	Simeto	43,3	0,3536
165	Randazzo	Simeto	27,8	0,3752
166	Francavilla di Sicilia	Alcantara	41,0	0,4229
167	Alcantara	Alcantara	33,0	0,3216
168	Taormina	Alcantara	40,9	0,2990
169	Camaro	Fiumedinisi	38,5	0,3030
170	Messina	Fiumedinisi	33,8	0,2598
171	Ganzirri	Fiumedinisi	34,4	0,2121
172	Aliterme	Fiumedinisi	32,7	0,2764

A partire da tali valori sono state costruite le carte iso-a ed iso-n per il territorio siciliano riportate in figura 2 e 3.

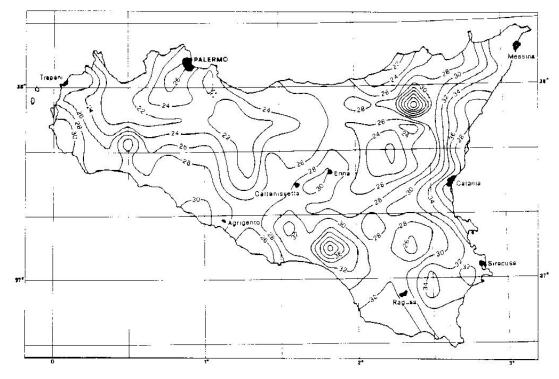


Figura 2: Carta delle iso-a·10-2 per il territorio siciliano (Cannarozzo, D'Asaro, Ferro)

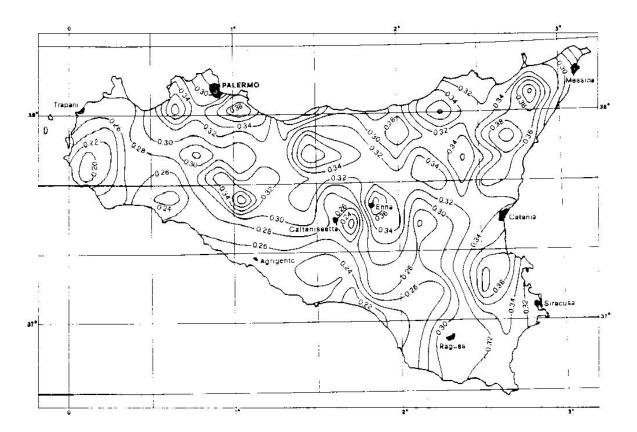


Figura 3: Carta delle iso-n per il territorio siciliano (Cannarozzo, D'Asaro, Ferro)

I bacini idrografici in studio ricadono nella sottozona C, e dall'interpolazione lineare delle carte iso-a ed iso-n ottenute per il territorio siciliano sono stati ricavati i seguenti parametri:

$$a = 26.5$$
; $n = 0.3220$

Da quanto sopra esposto poiché il bacino ricade all'interno della sottozona C, come già detto, la curva di probabilità pluviometrica sarà data da:

$$h_{t,T} = 265t^{0.3220} [0.5015 - 0.003516t + (0.000372^2 + 0.00102t + 1.0101)logT]$$

E' stato tuttavia riconosciuto che tale curva non fornisce risultati attendibili per durate della pioggia inferiori all'ora. In questo caso, occorre prima calcolare la pioggia di massima intesità e di durata 1 ora $h_{1,T}$ attraverso la formula sopra riportata e poi applicare la seguente formula di riduzione di Ferro e Ferreri valida per il territorio siciliano:

$$h_{t,T} = h_{1,T} \left(\frac{t}{60}\right)^{0.385}$$

in cui *t* è la durata della pioggia espressa in minuti primi.

Le curve di probabilità pluviometrica ($h_{t,T}$ e $i_{t,T}$), così ottenute per il bacino in esame e corrispondenti ai tempi di ritorno T= 25, 50, 100, 200 e 500 anni sono state riportate di seguito in forma tabellare (tabella 2) ed informa grafica (figure 4 e 5).

Curva di Probabilità Pluviometrica - h $_{t,T}$

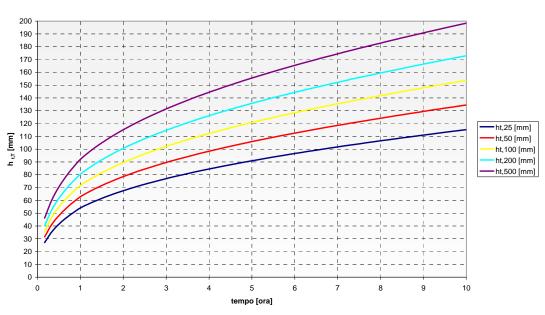


Figura 4: Curve di probabilità pluviometrica $h_{t,T}$ per T = 25, 50, 100, 200 e 500 anni

Curva di Probabilità Pluviometrica - i t,T

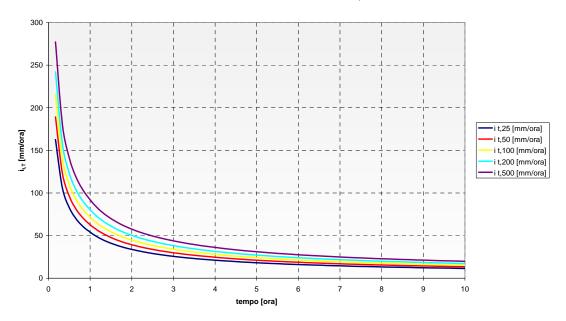


Figura 5: Curve di probabilità pluviometrica $i_{t,T}$ per T = 25, 50, 100, 200 e 500 anni

Tabella 2: Curve di probabilità pluviometrica $h_{t,T}$ $i_{t,T}$ per T = 25, 50, 100, 200 e 500 anni

T [anni]		25		50	100 200		200		100 200 500		500
t	h _{t,25}	i _{t,25}	h _{t,50}	i _{t,50}	h _{t,100}	i _{t,100}	h _{t,200}	i _{t,200}	h _{t,500}	i _{t,500}	
[ora]	[mm]	[mm/ora]	[mm]	[mm/ora]	[mm]	[mm/ora]	[mm]	[mm/ora]	[mm]	[mm/ora]	
0.1667	27.11	162.69	31.53	189.17	35.94	215.65	40.35	242.13	46.19	277.13	
0.3333	35.41	106.22	41.17	123.51	46.93	140.80	52.70	158.09	60.32	180.95	
0.5	41.39	82.78	48.13	96.25	54.86	109.73	61.60	123.20	70.51	141.01	
0.6667	46.24 50.39	69.36	53.76 58.59	80.65 70.30	61.29 66.79	91.93 80.15	68.82 74.99	103.22 89.99	78.76	118.15	
0.8333 1	54.05	60.46 54.05	62.85	62.85	71.64	71.64	80.44	80.44	85.83 92.07	103.00 92.07	
1.1667	56.80	48.68	66.04	56.61	75.29	64.54	84.54	72.46	96.76	82.94	
1.3333	59.29	44.47	68.94	51.71	78.60	58.95	88.26	66.19	101.02	75.77	
1.5	61.58	41.05	71.61	47.74	81.64	54.43	91.68	61.12	104.94	69.96	
1.6667	63.70	38.22	74.08	44.45	84.46	50.68	94.85	56.91	108.57	65.14	
1.8333	65.68	35.83	76.39	41.67	87.10	47.51	97.81	53.35	111.97	61.07	
2	67.55	33.77	78.57	39.28	89.59	44.79	100.60	50.30	115.17	57.58	
2.1667	69.31	31.99	80.62	37.21	91.93	42.43	103.24	47.65	118.20	54.55	
2.3333	70.99 72.58	30.42 29.03	82.58 84.44	35.39 33.78	94.16 96.29	40.36 38.52	105.75 108.15	45.32 43.26	121.07 123.82	51.89 49.53	
2.6667	74.11	27.79	86.22	32.33	98.33	36.87	110.44	41.41	126.44	49.53	
2.8333	75.58	26.67	87.93	31.03	100.28	35.39	112.64	39.75	128.96	45.52	
3	76.99	25.66	89.58	29.86	102.16	34.05	114.75	38.25	131.39	43.80	
3.1667	78.35	24.74	91.16	28.79	103.98	32.84	116.79	36.88	133.73	42.23	
3.3333	79.66	23.90	92.70	27.81	105.73	31.72	118.77	35.63	136.00	40.80	
3.5	80.93	23.12	94.18	26.91	107.43	30.69	120.68	34.48	138.19	39.48	
3.6667	82.16	22.41	95.62	26.08	109.08	29.75	122.53	33.42	140.32	38.27	
3.8333	83.36	21.75	97.02	25.31	110.68	28.87	124.34	32.44	142.39	37.15	
4 4007	84.52	21.13	98.38	24.59	112.23	28.06	126.09	31.52	144.40	36.10	
4.1667 4.3333	85.66 86.76	20.56 20.02	99.71 101.00	23.93 23.31	113.75 115.23	27.30 26.59	127.80 129.47	30.67 29.88	146.37 148.28	35.13 34.22	
4.5555	87.84	19.52	101.00	22.72	116.68	25.93	131.09	29.13	150.15	33.37	
4.6667	88.90	19.05	103.49	22.18	118.09	25.31	132.69	28.43	151.98	32.57	
4.8333	89.93	18.61	104.70	21.66	119.47	24.72	134.25	27.78	153.77	31.82	
5	90.94	18.19	105.88	21.18	120.83	24.17	135.77	27.15	155.53	31.11	
5.1667	91.93	17.79	107.04	20.72	122.16	23.64	137.27	26.57	157.25	30.44	
5.3333	92.90	17.42	108.18	20.28	123.46	23.15	138.74	26.01	158.94	29.80	
5.5	93.85	17.06	109.29	19.87	124.74	22.68	140.18	25.49	160.60	29.20	
5.6667	94.78 95.70	16.73	110.39	19.48	126.00	22.23	141.60	24.99	162.23	28.63	
5.8333	96.61	16.41 16.10	111.47 112.53	19.11 18.75	127.23 128.45	21.81 21.41	143.00 144.37	24.51 24.06	163.84 165.42	28.09 27.57	
6.1667	97.50	15.81	113.57	18.42	129.65	21.02	145.72	23.63	166.98	27.08	
6.3333	98.37	15.53	114.60	18.09	130.83	20.66	147.06	23.22	168.51	26.61	
6.5	99.24	15.27	115.61	17.79	131.99	20.31	148.37	22.83	170.02	26.16	
6.6667	100.09	15.01	116.61	17.49	133.14	19.97	149.67	22.45	171.52	25.73	
6.8333	100.93	14.77	117.60	17.21	134.27	19.65	150.95	22.09	172.99	25.32	
7	101.75	14.54		16.94	135.39	19.34	152.21	21.74		24.92	
7.1667	102.57	14.31	119.54	16.68	136.50	19.05	153.46	21.41	175.89	24.54	
7.3333	103.38	14.10 13.89	120.49	16.43 16.19	137.59	18.76	154.70	21.09	177.31	24.18	
7.5 7.6667	104.18 104.97	13.89	121.42 122.35	15.19	138.67 139.74	18.49 18.23	155.92 157.13	20.79 20.49	178.72 180.11	23.83 23.49	
7.8333	104.97	13.50	123.27	15.74	140.80	17.97	158.32	20.49	181.49	23.49	
8	106.52	13.32	124.18	15.52	141.84	17.73	159.50	19.94	182.85	22.86	
8.1667	107.29	13.14	125.08	15.32	142.88	17.50	160.68	19.67	184.20	22.56	
8.3333	108.04	12.97	125.97	15.12	143.91	17.27	161.84	19.42	185.54	22.27	
8.5	108.79	12.80	126.86	14.92	144.92	17.05	162.99	19.18	186.87	21.99	
8.6667	109.53	12.64	127.73	14.74	145.93	16.84	164.13	18.94	188.19	21.71	
8.8333	110.27	12.48	128.60	14.56	146.93	16.63	165.27	18.71	189.50	21.45	
9 9.1667	111.00 111.73	12.33	129.46	14.38	147.93	16.44	166.39	18.49	190.80	21.20	
9.1667	111.73	12.19 12.05	130.32 131.17	14.22 14.05	148.91 149.89	16.24 16.06	167.51 168.61	18.27 18.07	192.08 193.36	20.95 20.72	
9.3333	113.16	11.91	132.01	13.90	150.86	15.88	169.71	17.86	193.36	20.72	
9.6667	113.16	11.78	132.84	13.74	151.83	15.71	170.81	17.67	195.90	20.49	
9.8333	114.57	11.65	133.68	13.59	152.78	15.54	171.89	17.48	197.15	20.05	
10	115.26	11.53	134.50	13.45	153.74	15.37	172.97	17.30	198.40	AG 22 ^{19,84}	

Scelta del modello di trasformazione afflussi/deflussi

Nella scelta del modello di trasformazione afflussi/deflussi si e' tenuto conto della estensione e delle caratteristiche morfometriche dei bacini da esaminare.

In particolare per i bacini montani di superficie inferiore a 15 Km² per la valutazione delle portate piena si è ritenuto opportuno fare riferimento al metodo comunemente noto come il metodo razionale:

Le ipotesi base di tale modello sono:

- la formazione della piena è dovuta unicamente al trasferimento della massa liquida;
- il percorso seguito da ogni goccia d'acqua dipende solamente dal punto in cui essa è caduta;
- la velocità di ogni goccia non è influenzata dalla presenza della altre gocce;
- la portata defluente è la somma delle portate elementari provenienti dalle diverse aree del bacino che si presentano, allo stesso istante, nella sezione studiata.

Secondo il modello cinematico l'evento di pioggia più gravoso ai fini della formazione del deflusso è quello di durata pari al tempo di corrivazione del bacino.

La portata al colmo della piena critica di progetto sarà, dunque, data secondo la formula razionale dall'espressione:

$$Q = \frac{\phi \times i \times A}{360}$$

dove:

- $m{\Phi}$ è il valore del coefficiente d'deflusso medio del bacino afferente alla sezione di calcolo;
 - *i* è l'intensità media della pioggia in [mm/h] di durata pari al tempo di corrivazione del bacino e corrispondente ad un dato tempo ritorno T;
- \boldsymbol{A} è la superficie del bacino, espressa in ettari [ha], sottesa dalla sezione di calcolo considerata;

Il valore medio del coefficiente d'afflusso Φ è stato ricavato, di volta in volta, come media pesata dei coefficienti di afflusso dei singoli sottobacini sottesi dalla sezione di calcolo, questi ultimi valutati secondo la relazione proposta da Wisner e P'ing:

$$\Phi = \Phi_{\text{imp}} S_{imp} + \Phi_{\text{perm}} (S - S_{imp})$$

dove:

 $S-S_{imp}$

è l'area delle superfici permeabili a cui è stato associato un coefficiente di deflusso Φ_{perm} =0,4 (fissato sulla base dei dati suggeriti dalla letteratura tecnica per le tipologie di suolo in interesse)

 S_{imp}

è l'area delle superfici impermeabili a cui è stato associato un coefficiente di afflusso pari a Φ_{imp} =0,8 (fissato sulla base dei dati suggeriti dalla letteratura tecnica per le tipologie di suolo in interesse).

BACINO	S	L	Н	Z	Hmax-Z	% IMP	ϕ_{imp}	∮ _{perm}	φ
BACINO	km ²	km	m s.l.m.	m s.l.m.	m				
A1	7,14	3,3	95,8	13,0	162,00	0,3	0,8	0,4	0,52
A2	5,65	5,5	135,5	31,0	159,05	0,2	0,8	0,4	0,48
A3	1,83	1,5	109,9	31,2	148,85	0,2	0,8	0,4	0,48
A4	21,29	11,7	221,1	32,2	317,85	0,1	0,8	0,4	0,44
A5	0,772	1,1	119,3	55,0	115,00	0,1	0,8	0,4	0,44

Tabella 3: Coefficienti di deflusso per i bacini idrografici in esame:

Per la valutazione del tempo di corrivazione del bacino sono state adottate due formulazioni diverse. In particolare, per i bacini A1, A2, A3 e A5 aventi superficie inferiore a $10 \, \mathrm{km^2}$ è stata adottata, la formula di Aronica e Paltrinieri ottenuta modificando la formula del Giandotti (valida per bacini di superficie compresa tra $170 \, \mathrm{e} \, 70.000 \, \mathrm{km^2}$) per consentirne l'applicabilità a piccoli bacini di dimensioni inferiori ai $10 \, \mathrm{km^2}$.

$$t_c = \frac{\left(\frac{1}{M \cdot d}\right)\sqrt{S} + 1.5L}{0.8\sqrt{H - Z}}$$

in cui

L = lunghezza dell'asta principale in Km;

S = superficie totale del bacino in Km²;

H = quota media del bacino in m s.l.m.;

Z = quota della sezione di chiusura in m s.l.m.

M = costante che tiene conto del tipo di copertura prevalente nel bacino;

d= costante che tiene conto della permeabilità del bacino;

Nella tabella seguente si riportano i valori consigliati dagli autori per le costanti M e d in funzione del tipo di utilizzazione del suolo e della permeabilità dei terreni.

Tabella 3.12 Valori delle costanti M e d della formula (3.74)[16].

Tipo di copertura	М
Terreno nudo	0.667
Terreni coperti con erbe rade	0.250
Terreni coperti da bosco	0.200
Terreni coperti da prato permanente	0.167
Permeabilità	d
Terreni semi-impermeabili	1.270
Terreni poco permeabili	0.960
Terreni mediamente permeabili	0.810
Terreni molto permeabili	0.690

In particolare, per i bacini in esame sono stati considerati valori di M=0.25 (terreni coperti con erbe rade) e valori di d=0.96 (terreni poco permeabili).

Mentre per il calcolo del tempo di corrivazione del bacino A4 avente superficie di circa 20 km² è stata adottata la formula di Ferro valida per bacini da 1 a 5500 km².

$$t_c = 0.675 \cdot S^{0.5}$$

in cui

S = superficie totale del bacino in Km²;

Stima delle portate al colmo nelle interferenze con il reticolo idrografico

Utilizzando i modelli sopra illustrati, in corrispondenza delle sezioni di interferenza del tracciato stradale con il reticolo idrografico, si sono valutati i tempi di corrivazione dei bacini e le portate al colmo con tempo di ritorno di 100, 200 e 500 anni (tabella 4).

BACINO	tc	φ	i t,100	Q t,100	i t,200	Q t,200	i t,500	Q t,500
BACINO	ore		[mm/ora]	[m3/s]	[mm/ora]	[m3/s]	[mm/ora]	[m3/s]
A1	2,21	0,52	41,78	43,09	46,92	48,39	53,72	55,40
A2	2,22	0,48	41,78	31,47	46,92	35,35	53,72	40,47
A3	1,11	0,48	66,48	16,18	74,64	18,16	85,44	20,79
A4	3,11	0,44	32,15	83,66	36,12	93,97	41,36	107,60
A5	0,82	0,44	81,15	7,66	91,11	8,60	104,28	9,84

Tabella 4: Portate al colmo nelle interferenze con il reticolo idrografico per Tr = 100, 200, 500 anni

Si ricorda che ai fini del progetto del I Lotto Funzionale i bacini idrografici a cui fare riferimento sono l'A4 e A5

Definizione delle portate di progetto per le opere di raccolta e smaltimento delle acque di piattaforma

Il processo di deflusso dalla sede stradale alla cunetta è da considerarsi con molta attenzione per i problemi che il velo liquido può porre per il traffico veicolare.

Le precipitazioni che si abbattono sulla sede stradale possono infatti produrre, specie se brevi ed intense, un deflusso di non trascurabile entità, che se non controllato con adatte disposizioni può causare inconvenienti di rilievo alla circolazione veicolare.

L'altezza del velo liquido dipende da diversi fattori, quali: la pendenza trasversale della piattaforma stradale, dall'intensità della precipitazione e dal percorso che l'acqua compie per raggiungere il bordo della carreggiata. Quest'ultimo fattore, a sua volta, dipende dalla circostanza che il tratto stradale sia in rettifilo o in curva e dalla pendenza longitudinale della strada stessa. Lo spessore massimo del velo liquido è di 1÷2 mm.

La regimentazione e lo smaltimento delle acque raccolte nella piattaforma stradale avviene tramite un sistema di drenaggio costituito da:

- piattaforma stradale con pendenza trasversale del 2,5%;
- canalette laterali (in cls) di raccolta e confluenza;
- canalette ad embrici prefabbricati;
- fossi di guardia;
- tubi di drenaggio;
- tombini di attraversamento della sede viaria.

Nello specifico, relativamente allo smaltimento delle acque di piattaforma della viabilità principale, ai margini di ciascuna delle due banchine è stata prevista una canaletta di drenaggio grigliata con sezione trasversale di dimensioni interne pari a 30x15 cm; 30x30 cm; oppure 50x50 cm. In tal modo, le acque di piattaforma verranno intercettate dalle griglie e convogliate mediante le canalette in corrispondenza dei punti in cui sono state previste, in fase di progetto definitivo, delle vasche di trattamento delle acque di prima pioggia. In particolare, il progetto definitivo di ammodernamento della SP 46 Ispica Pozzallo prevedeva la realizzazione di 4 vasche di prima pioggia dalle quali le acque di prima pioggia trattate e le acque di seconda pioggia sarebbero state avviate agli scarichi diretti nei corpi idrici ricettori vicini.

In questa fase di progettazione, relativa alla realizzazione del I° Stralcio Funzionale, per non stravolgere quanto previsto in fase di progetto definitivo si è deciso, momentaneamente, di avviare direttamente al corpo idrico ricettore le acque di piattaforma pertinenti al primo svincolo (dalla sez. 1 alla sez. 7). A tal fine sono state previste due canalette ad embrici che permettono di avviare ai fossi di guardia le acque di piattaforma drenate dalle canalette drenanti. Tali acque saranno quindi scaricate nell'impluvio in prossimità del tombino idraulico presente nella sezione di chiusura A5.

Le acque di piattaforma pertinenti al tratto di tracciato stradale compreso tra la sez. 7 e la sez. 69a verranno invece avviate verso il punto in cui dal progetto definitivo era prevista la realizzazione di una vasca di prima pioggia di 70 m3. Poiché a causa della mancanza di risorse economiche tale vasca non potrà essere realizzata, nell'ambito del presente I Stralcio Funzionale del progetto, tali acque verranno scaricate direttamente nel torrente Salvia.

Infine le acque di piattaforma pertinenti al tratto di tracciato stradale compreso tra la sezione 69a e la sezione 76 verranno avviate alla vasca di prima pioggia che sarà realizzata in prossimità della sezione 80 (progr. Km 1+500,00). Da tale vasca poi le acque di prima pioggia trattate e le acque di seconda pioggia verranno scaricate in un impluvio vicino che affluisce nel torrente Salvia (vedi la planimetria idraulica 4.2.3 e la planimetria manufatti di trattamento e scarichi in alveo 4.4.2).

La scelta di utilizzare delle canalette grigliate come sistema di smaltimento delle acque di piattaforma, è stata dettata dalla necessità di limitare il più possibile la profondità di scavo per la rete drenante. La presenza di diversi tombini idraulici lungo il tracciato, avrebbe infatti determinato numerose interferenze con la rete

drenante. In tal modo si è evitato di dover demolire alcuni tombini idraulici preesistenti.

Relativamente al dimensionamento ed alla verifica idraulica di tutte le opere costituenti gli schemi idraulici di drenaggio e presidio dell'infrastruttura sono stati adottati i seguenti tempi di ritorno:

- drenaggio della piattaforma stradale: Tr=25 anni;
- fossi di guardia dell'asse principale Tr=50 anni;
- fossi di guardia delle strade secondarie Tr=25 anni;
- impianti di sollevamento Tr=25 anni.

6.1 Definizione della portata di progetto per le canalette

La piattaforma base dell'infrastruttura viaria in progetto è di tipo "C1", costituita da due corsie di 3,75 m, affiancate da una banchina pavimentata di 1,50 m. Per l'intercettazione e il convogliamento delle acque di piattaforma della viabilità principale, i margini di ciascuna delle due banchine è stata prevista una canaletta di drenaggio grigliata con sezione trasversale di dimensioni interne pari a 30x15 cm; 30x30 cm oppure 50x50 cm .

La portata di progetto della canalette di drenaggio sarà, quindi, quella generata dallo smaltimento dell'acqua raccolta da mezza carreggiata per un lunghezza L, che dipende dall'andamento altimetrico del tracciato stradale.

Per la valutazione della portata di progetto per le canalette di drenaggio a bordo strada è stata applicata la formula razionale imponendo un tempo di ritorno pari a 25 anni.

$$Q_{25\,anni} = \frac{\phi \times i \times S}{360}$$

Data la piccola estensione delle superfici drenate, il tempo di corrivazione è stato valutato secondo la relazione:

$$t_c - t_{acc} + \sum \frac{L_t}{1.5 \ v_t}$$

dove t_{acc} è il tempo di accesso in rete mentre $\sum_{i,k} \frac{k_i}{v_i}$ rappresenta il tempo percorso dalla corrente all'interno la canaletta per percorrere il tratto Li ipotizzando un moto

uniforme con velocità *vi*. Relativamente al tempo di accesso in rete in letteratura (Sistemi di fognatura-Manuale di Progettazione CSDU-Hoepli) normalmente tale valore viene assunto compreso tra 5 e 10 minuti. Nel nostro caso al fine di mantenerci in sicurezza e tenuto conto della linearità del percorso idraulico che le acque di piattaforma dovranno effettuare e della regolarità della superficie stradale, a tatto assegnato un valore pari a 3 minuti,

6.2 Definizione della portata di progetto per i fossi di guardia

I fossi di guardia rappresentano un'importante opera a difesa del corpo stradale; essi servono per convogliare negli impluvi naturali le acque superficiali che, per la naturale conformazione del terreno, verrebbero altrimenti a raccogliersi ai piedi del rilevato od a invadere le trincee provocando, così, cedimenti dei rilevati o delle scarpate delle trincee.

La portata di progetto dei fossi di guardia è stata valutata con la stessa metodologia adottata precedentemente per la valutazione della portata al colmo in corrispondenza con le intersezioni del tracciato stradale con il reticolo idrografico. In particolare, i tempi di ritorno scelti sono stati di 50 anni per i fossi di guardia a protezione dell' asse principale e di 25 anni per quelli a protezione degli assi secondari.

I tratti del tracciato in cui la sezione stradale è in trincea o a mezza costa sono piuttosto brevi. In tali tratti i fossi di guardia proteggono il tracciato stradale dalle acque meteoriche esterne, che confluiscono per scorrimento sulla superficie del terreno.

La massima superficie scolante che compete a tali opere, da un analisi dell'andamento dei bacini idrografici è stata valutata paria a S= 0.2 km² con una lunghezza dell'asta principale di L=900 m e con un dislivello medio ${\tt ZH}$ = H-Z = 10m , pertanto dalla formula di Aronica e Paltrinieri essa presenta un tempo di corrivazione .

$$t_c = \frac{\left(\frac{1}{M \cdot d}\right)\sqrt{S} + 1.5L}{0.8\sqrt{H - Z}} = 0.77 ore = 46.2 min$$

con M=0.960 e d=0.250

Dalle curve di probabilità pluviometrica relative, rispettivamente, ad un tempo di ritorno T=25 anni e T= 50 anni (vedi figura 3 e tabella 2) sono state ricavate, allora, le intensità orarie per la precipitazioni critica con durata pari a tc :

$$i_{t,T} = i_{tc,25anni} = 63.64mm / ora$$

 $i_{t,T} = i_{tc,50anni} = 74.00mm / ora$

La portata nella sezione terminale del fosso di guardia, calcolata con la formula razionale, e ponendo $\mathbb{Z}=0.48$, risulta allora pari a:

$$Q_{25anni} = \frac{\phi \times i \times S}{360} = 0.170 m^3 / s$$

$$Q_{50anni} = \frac{\phi \times i \times S}{360} = 0.197m^3 / s$$

APPENDICE

"Un modello regionale per la determinazione delle curve di probabilità pluviometrica del territorio siciliano" (M.Cannarozzo, F. D'Asaro, V. Ferro)

UN MODELLO REGIONALE PER LA DETERMINAZIONE DELLE CURVE DI PROBABILITÀ PLUVIOMETRICA DEL TERRITORIO SICILIANO*

di M. Cannarozzo, F. D'Asaro, V. Ferro **

SOMMARIO

Nella memoria sono dedotte le espressioni delle curve di probabilità pluviometrica (CPP) per l'intero territorio siciliano.

A tale scopo è stato applicato il modello probabilistico a doppia componente (TCEV) alla serie dei massimi annuali delle piogge di breve durata. L'analisi condotta ha permesso di suddividere la Sicilia in tre sottozone omogenee per le quali si fornisce una espressione esplicita della CPP.

1. PREMESSE

Una delle determinazioni usuali nella ingegneria idraulica è quella che riguarda la portata di piena in una fissata sezione di una rete idrografica naturale o artificiale (reti di fognatura).

E' nota l'estrema importanza di tale determinazione che condiziona il dimensionamento dei manufatti interessati dall'evento di piena.

L'uso dei modelli afflussi-deflussi (formula razionale, metodo della corrivazione, etc.) normalmente applicati per la stima indiretta della portata, richiede l'assunzione di due elementi principali:

- le perdite per infiltrazione;

- la "pioggia di progetto", ovvero l'evento di pioggia di fissato tempo di ritorno e durata.

Riguardo quest'ultima valutazione si ricorre alla curva di probabilità pluviometrica (CPP) per la cui determinazione si segue di regola la seguente procedura:

a) identificazione del modello probabilistico della serie dei massimi annuali delle altezze di pioggia x_t di data durata t e valutazione delle piogge $x_{t,T}$ di dato tempo di ritorno;

b) individuazione della legge di variazione dell'altezza di pioggia di data probabilità (o tempo di ritorno) con la durata dell'evento.

In relazione a questi due punti, la maggiore causa di indeterminatezza è certamente da ascrivere alla ridotta, se non nulla, informazione idrologica spesso disponibile nell'area di interesse. Infatti la valutazione probabilistica degli eventi più rari, ovvero relativi ad un elevato valore del tempo di ritorno, risulta tanto più incerta quanto minore è la numerosità campionaria.

Per ovviare agli inconvenienti ora detti, e quindi migliorare la stima delle previsioni, l'approccio da seguire è quello di tipo *regionale* che consente di utilizzare contemporaneamente tutta l'informazione idrologica disponibile su una vasta area.

Un approccio di questo tipo permette ancora di prendere in considerazione leggi di probabilità a più di due parametri che, grazie alla maggiore "flessibilità", si adattano meglio alle distribuzioni di frequenza empirica. In considerazione di quanto detto, nel presente lavoro si riportano i risultati di uno studio riguardante la struttura probabilistica delle piogge intense nell'ambiente siciliano, in cui è stato utilizzata una particolare tecnica di regionalizzazione ed una legge di probabilità a quattro parametri.

Rimandando alla memoria originale (CANNAROZZO et Al., 1990) per gli sviluppi teorici e le verifiche, sono qui fornite le formulazioni sintetiche delle curve di probabilità pluviometrica valide per il territorio Siciliano dando così la possibilità di effettuare stime indirette in siti in cui risulta carente o addirittura inesistente l'informazione pluviografica.

2. LA LEGGE DI DISTRIBUZIONE A DOPPIA COMPONENTE TCEV

L'osservazione empirica dei campioni dei massimi annuali di precipitazioni di breve durata (tab.III, parte I, Annali Idrologici del Servizio Idrografico Italiano) porta spesso a riconoscere l'esistenza di alcuni valori eccezionali estremamente più elevati degli altri (outliers) (fig.l). E' stato sempre un problema controverso tra gli ingegneri come trattare tali valori, se considerarli anomali, e quindi escluderli, oppure se tenerli in debito conto, dato che proprio gli eventi straordinari sono quelli responsabili dei maggiori danni. Una corrente interpretazione statistica di tali valori straordinari è quella di considerarli appartenenti ad una popolazione

^{*} Il contributo all'impostazione ed allo svolgimento del lavoro va suddiviso in maniera paritetica tra gli Autori. Ricerca compiuta con il contributo finanziario del G.N.D.C.I., U.O. 1.10, Responsabile Prof. I. Melisenda, U.O. 3.10, Responsabile Prof. M. Santoro.

^{**} Dott.Ing. Marcella Cannarozzo, Ricercatore, Istituto di Idraulica, Università di Palermo; Prof.Ing. Francesco D'Asaro, Associato di Sistemazioni Idraulico Forestali, Istituto di Genio Rurale e Forestale, Università di Basilicata; Dott.Ing. Vito Ferro, Dottore di Ricerca in Ingegneria Idraulica, Ricercatore, Istituto di Genio Rurale, Università di Reggio Calabria.

Nella pagina accanto: Fig. 1: esempio di carta probabilistica di Gumbel; Fig. 2: esempio di carta probabilistica TCEV.

diversa, legata ad una differente fenomenologia metereologica, che deve essere riprodotta dalla legge di di-

stribuzione di probabilità.

La peculiarità del modello TCEV (Two Component Extreme Value distribution) (ROSSI et Al., 1984) è proprio quella di tradurre in termini statistici la differente provenienza degli estremi idrologici riconducendosi formalmente al prodotto di due funzioni di probabilità del tipo Gumbel (fig.2). La prima descrive una variabile che assume valori non elevati ma frequenti (componente "base" o "ordinaria"), mentre la seconda genera eventi più rari ma mediamente più rilevanti (componente "straordinaria").

La legge di distribuzione TCEV ha la seguente espressione:

$$F(x) = \exp(-\lambda_1 \exp(-x/\phi_1) - \lambda_2 \exp(-x/\phi_2))$$
 (1)

in cui si è indicato con F(x) la probabilità di non superamento dell'altezza di pioggia x di durata t (con $x \ge O$) con λ_1 , λ_2 , ϕ_1 e ϕ_2 i quattro parametri della legge. In particolare λ_1 ed λ_2 rappresentano il numero medio di eventi, rispettivamente, della componente base e di quella straordinaria (λ_1) λ_2) mentre ϕ_1 e ϕ_2 rappresentano le medie degli eventi appartenenti a ciascuna componente (ϕ_2) ϕ_1) (ROSSI et Al., 1984).

La stima dei quattro parametri può essere condotta, con il metodo della massima verosimiglianza (ML) (FIORENTINO, GABRIELE, 1985), sia a partire da una singola serie di dati sia utilizzando la procedura di regionalizzazione più avanti descritta. E' chiaro che la presenza di quattro parametri conferisce al modello TCEV caratteristiche di maggiore "flessibilità" e ciò migliora l'adattamento alle singole serie, tuttavia vanno tenute in conto le maggiori difficoltà connesse al metodo di stima dei parametri e la notevole variabilità di questa stima con la dimensione campionaria. Quest'ultima circostanza induce a preferire alla stima puntuale la procedura di regionalizzazione che comporta, per ciascuna durata, l'elaborazione contemporanea di tutti i dati storici rilevati all'interno della regione.

Se si introduce la variabile standardizzata y definita dalla seguente espressione:

$$y = (x/\phi_1) - \ln \lambda_1 \tag{2}$$

la (l) assume la seguente forma:

$$F(y) = \exp(-\exp(-y) - \Lambda^* \exp(-y/\theta^*))$$
 in cui si è posto

$$\theta^* = \varphi_2/\varphi_1 \tag{4}$$

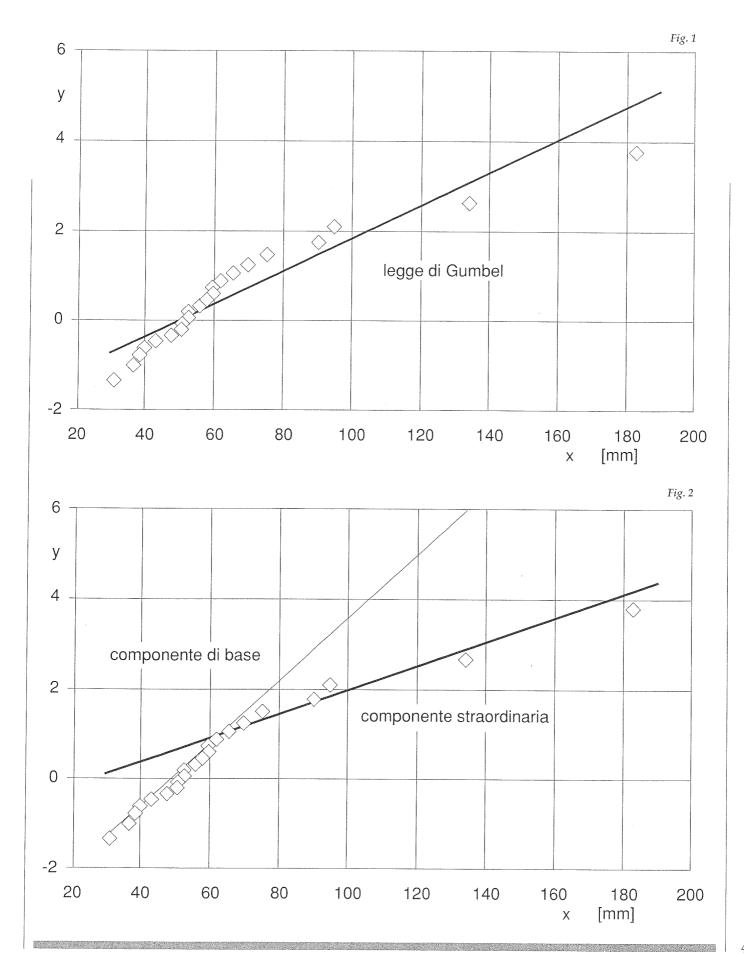
$$\Lambda^* = \lambda_2/(\lambda_1)^{1/\theta^*} \tag{5}$$

L'analisi svolta da Beran, Hosking e Arnell (1986), condotta in tutto il campo dei valori reali di y, ha consentito sia di dimostrare che il coefficiente di asimmetria della distribuzione TCEV dipende solo dai parametri Λ^* e θ^* mentre il suo coefficiente di variazione dipende da Λ^* , θ^* e λ_1 , sia di pervenire alle espressioni analitiche dei momenti della (3). In particolare la media μ ha la seguente espressione:

$$\mu = \varphi_1 \left[\ln \lambda_1 + 0.5772 - \sum_{j=1}^{\infty} \frac{(-1)^j \Lambda^{*j} r(j/\theta^*)}{j!} \right]$$
 (6)

Dai risultati dello studio già citato, deriva la procedura gerarchica di regionalizzazione che si articola su tre livelli successivi in ognuno dei quali è possibile ritenere costanti alcuni statistici.

Più precisamente, nel primo livello di regionalizzazione si ipotizza che il coefficiente di asimmetria teorico GT delle serie dei massimi annuali delle piogge di breve durata sia costante in una regione molto ampia, denominata zona omogenea, alla quale vengono a competere due valori costanti dei parametri Λ^* e θ^* .


La stima dei suddetti parametri è ottenuta. per ciascuna durata, risolvendo per via iterativa le due equazioni del metodo ML utilizzando contemporaneamente tutte le serie storiche standardizzate (eq. 2) ricadenti nella zona omogenea. Successivamente, sempre con il metodo ML, per ciascuna serie vengono stimati i parametri ϕ_1 ed λ_1 della componente base $\emph{vincolati}$ ai valori dei parametri regionali Λ^* e θ^* prima individuati.

Il secondo livello di regionalizzazione riguarda l'individuazione di sottozone omogenee, interne alla precedente, nelle quali risulti costante, oltre al coefficiente di asimmetria, anche il coefficiente di variazione della legge teorica. Ciò significa che per tutte le serie campionarie appartenenti ad una sottozona risultano costanti

tre parametri Λ^* , θ^* e λ_1 del modello TCEV.

Introducendo nella (I) la variabile adimensionale $x^1 = x/\mu$, avendo l'espressione (6), e tenendo conto delle (4) e (5) si perviene alla seguente equazione della legge di distribuzione TCEV della variabile x^1 , denominata anche "curva di crescita":

$$F(x') = \exp(-\lambda_{1}(\exp \alpha)^{-x'} - \Lambda^{*} \lambda_{1}^{1/\theta^{*}}(\exp(\alpha/\theta^{*}))^{-x'})$$
 (7)

Nella pagina accanto: Fig. 3: sottozone pluviometriche omogenee; Fig. 4a: carta delle iso-a.

in cui si è indicato con α il rapporto μ/ϕ_1 che è funzione esclusivamente di θ^* , Λ^* e λ_1

Pertanto la variabile x' risulta identicamente distribuita in ciascuna sottozona secondo la (7).

Il terzo livello di regionalizzazione prevede, infine, la stima regionale del parametro centrale della distribuzione di probabilità che nel nostro caso è la media. Tale fase consiste, generalmente, nell'individuare legami di correlazione tra il parametro centrale e le variabili geografiche che caratterizzano il sito di misura; sistema alternativo, quando non emerge tale legame, è quello della mappatura dei valori del parametro centrale mediante una carta ad isolinee.

In ciascun livello di regionalizzazione della procedura gerarchica sarà ovviamente necessario controllare la veridicità dell'ipotesi statistica assunta effettuando verifiche sulla capacità del modello di riprodurre la distribuzione di frequenza empirica dello statistico di controllo (coefficiente di asimmetria, coefficiente di variazione) o effettuando opportuni test di omogeneità. Le suddette verifiche possono essere eseguite, però, solo al termine di ciascuna fase della procedura facendo ricorso a tecniche di generazione di dati del tipo Montecarlo.

3. DATI UTILIZZATI

Lo svolgimento della ricerca ha previsto la preliminare raccolta e archiviazione su memoria magnetica dei valori massimi annuali delle altezze di pioggia di durata pari ad 1, 3, 6, 12 e 24 ore.

Sono stati utilizzati i dati relativi alle 172 stazioni pluviografiche siciliane, equamente distribuite nella regione (il 32% nel versante settentrionale, il 38% in quello meridionale ed il 30% in quello orientale), che vantano un funzionamento di almeno 10 anni nel periodo di osservazione che va dal 1928 al 1981. La rete di misura è sufficientemente fitta, presentando in media una stazione ogni 150 Km².

La dimensione delle serie storiche, variabile da 10 a 45 anni, è mediamente pari a 23 anni per un totale, nel complesso delle durate, di circa 20.000 dati.

Sono stati anche utilizzati gli statistici delle serie storiche dei valori massimi annui delle piogge medie giornaliere dedotte da un precedente lavoro (FERRARI, 1985) (370 stazioni pluviografiche per un totale di 25.000 dati).

4. RISULTATI DELL'INDAGINE

Nel primo livello di regionalizzazione, assumendo che l'intera Sicilia sia una zona pluviometrica omogenea, si è proceduto alla stima dei parametri Λ^* e θ^* utilizzando tutti i dati standardizzati (eq.(2)) delle stazioni pluviografiche. I suddetti parametri regionali sono risultati dipendenti dalla durata (CANNAROZZO et Al., 1990) secondo le seguenti relazioni:

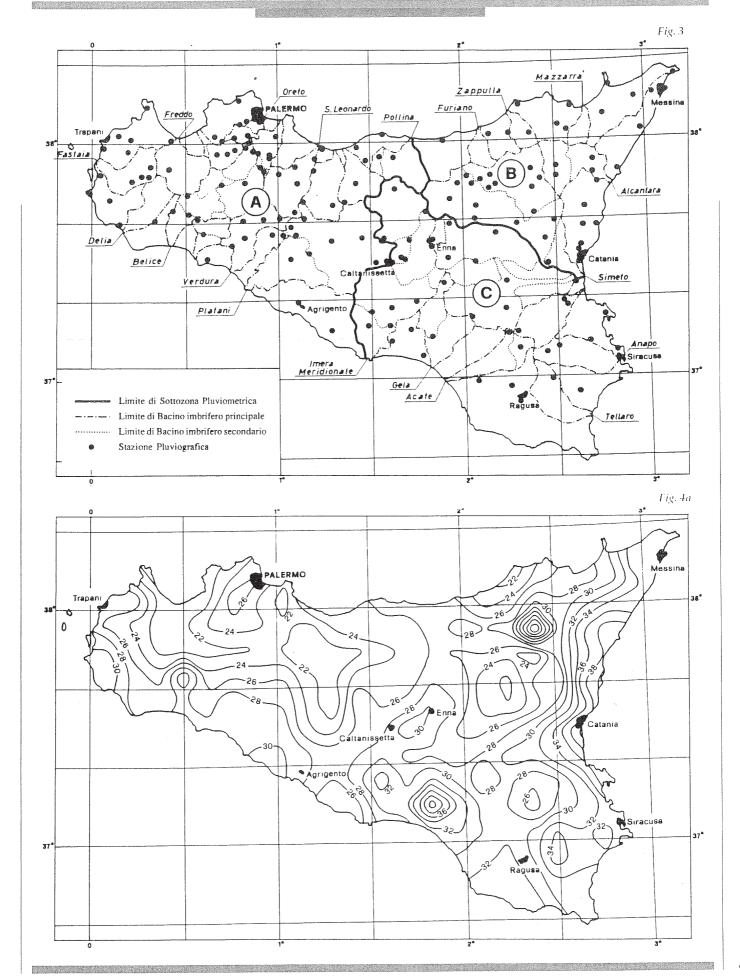
$$\theta^* = 1,95 + 0.0284 \text{ t} \tag{8}$$

$$\Lambda^* = 0.175 \, t^{0.301} \tag{9}$$

Pertanto, nell'ipotesi che l'intera Sicilia sia una zona pluviometrica omogenea e che sussista una dipendenza dei parametri regionali dalla durata, la distribuzione di probabilità (3) della variabile ridotta y assume la seguente espressione:

$$F(y) = \exp(-\exp(-y) - 0.175 t^{0.301} \exp(-y/(1.95 + 0.0284 t))) (10)$$

Il secondo livello di regionalizzazione, come già esposto, è finalizzato ad individuare delle aree, denominate nel nostro caso sottozone pluviometriche omogenee, all'interno delle quali si possa ritenere costante il parametro λ_1 - Ciascuna sottozona omogenea individuata sara caratterizzata da un unico valore del coefficiente di variazione della componente base, CVI, dato che quest'ultimo dipende esclusivamente dai parametri Λ^* , θ^* e λ_1 (FIORENTINO, GABRIELE 1985). Operativamente, le stazioni sono state raggruppate con la tecnica della cluster analysis, ottenendo suddivisioni che differivano di poco al variare della durata. E' stato pertanto possibile assumere un'unica suddivisione per tutte le durate (fig.3):


A - *Sottozona Ovest*, delimitata ad est dallo spartiacque del F. Imera Meridionale e del F. Pollina;

B - *Sottozona Nord-Est*, delimitata dai bacini del F. Pollina (ad ovest) e del F. Salso-Simeto a sud;

C - *Sottozona Sud-Est*, delimitata a nord dal bacino del F. Salso-Simeto e ad ovest dallo spartiacque del F. Imera Meridionale. A ciascuna sottozona, per ciascuna durata, e stato attribuito un valore costante, Λ_1 , pari alla media aritmetica dei valori λ_1 stimati nelle singole stazioni ricadenti nella sottozona.

L'analisi condotta ha permesso ancora di stabilire che i valori di Λ_1 e di α , parametri della (7), sono dipendenti dalla durata.

In ordine di sottozona le espressioni di Λ_1 sono risultate:

Sottozona A $\Lambda_1 = 14,55 \, t^{0,2419}$ (11a)

Sottozona B
$$\Lambda_1 = 12,40 t^{0,1802}$$
 (11b)

Sottozona C
$$\Lambda_1 = 11,96 t^{0.0960}$$
 (11c)

mentre quelle di α sono le seguenti:

Sottozona A
$$\alpha = 3,5208 \, t^{0,1034}$$
 (12a)

Sottozona B
$$\alpha = 3,3536 \, t^{0,0945}$$
 (12b)

Sottozona C
$$\alpha = 3,3081 \, t^{0,0765}$$
 (12c)

In definitiva la variabile x' è identicamente distribuita secondo la (7) in cui Λ^* , θ^* , Λ_1 ed assumono rispettivamente i valori forniti dalle (8), (9),(11) e (12).

La (7) non è pero esplicitabile rispetto ad x', pertanto non è direttamente deducibile il valore di x' corrispondente ad una prefissata frequenza probabile o, che è lo stesso, ad un prefissato valore del tempo di ritorno T. E' sembrato allora opportuno, per facilitare le applicazioni, dedurre l'espressione esplicita, approssimata, della distribuzione di probabilità (7) (CANNAROZZO et Al., 1990).

Per ciascuna sottozona e per valori del tempo di ritorno $T \ge 10$ anni sono state ottenute per interpolazione le seguenti espressioni:

Sottozona A

$$x'_{t,T} = 0.5391 - 0.001635t +$$

$$(0,000221t^2 + 0,00117t + 0,9966)\log T$$
 (13a)

Sottozona B

$$x'_{t,T} = 0.5135 - 0.002264t +$$

$$(0,000198t^2+0,00329t+1,0508)\log T$$
 (13b)

Sottozona C

$$x'_{t,T} = 0.5015 - 0.003516t +$$

$$(0,000372t^2+0,00102t+1,1014)\log T$$
 (13c)

ricordando che $x'_{t,T}$ è il valore della altezza di pioggia $x_{t,T}$, di fissata durata t e tempo di ritorno T, rapportata al corrispondente valore medio m della distribuzione TCEV.

L'equazione delle curve di probabilità pluviometrica CPP si ottiene, infine, moltiplicando ciascuna delle eq. (13) per la legge di variazione della media della legge TCEV con la durata t, ovvero:

$$X_{t,T} = X'_{t,T} \mu(t) \tag{14}$$

Poiché è stato verificato che la media teorica μ è sostanzialmente coincidente con la media campionaria m_c (CANNAROZZO et Al., 1990), il terzo livello di regionalizzazione ha avuto come obiettivo quello di individuare un criterio regionale per la stima di m_c nei siti privi di stazioni di misura o con un modesto numero di anni di osservazione, così da rendere applicabile la (14) in qualsiasi punto della regione.

Peraltro, la regionalizzazione di m_c consente di svincolare il terzo livello di regionalizzazione dalla procedura gerarchica, permettendone quindi un suo futuro aggiornamento del tutto indipendente dalle fasi precedenti. In primo luogo è stato riconosciuto che, in ciascuna delle 172 stazioni pluviografiche siciliane la media m_c è esprimibile in funzione della durata secondo la seguente legge monomia

$$\mathbf{m}_{c}(\mathbf{t}) = \mathbf{a} \, \mathbf{t}^{\mathbf{n}} \tag{15}$$

Tale risultato, peraltro non inatteso, consente di definire la CPP, piuttosto che ricorrendo ai cinque valori della media (m_c per t=1,3,6,12,24 ore), mediante i due soli parametri a ed n.

In tab. I sono riportati per ciascuna stazione i valori delle costanti a ed n della (15).

Per le stazioni pluviografiche ricadenti nelle tre sottozone, essendo noti i valori numerici delle costanti a e n la CPP è quindi pienamente individuata dalle eq. (13) e (15). Per i siti sprovvisti di stazioni di misura si può invece utilizzare la carta delle linee di egual valore di a (iso-a) e di n (iso-n) (figg. 4a, b), redatte per il territorio siciliano.

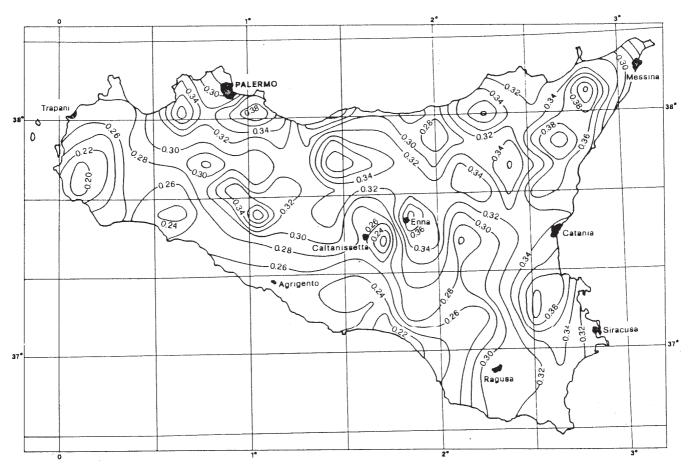
5. ESEMPI DI APPLICAZIONE

Esempio A - Si voglia ricostruire un evento meteorico di tempo di ritorno T = 100 anni e durata t = 5 ore relativamente alla stazione pluviometrica di Palermo O.A.

1 - La stazione pluviografica ricade nella sottozona omogenea A per cui vale l'espressione (13a) della curva di crescita; per T=100 e t = 5 ore si ricava dalla (13a) il seguente valore della variabile ridotta:

(0,000221 25+0,00117 5+0,9966)log 100=2,55

2 - dalla tab.I si traggono i valori dei coefficienti a ed n della stazione che specificano la legge (15), ovvero:


$$a = 22.2 \text{ mm}$$
 $n = 0.269$

3 - si valuta l'altezza di pioggia con la (14):

$$x_{5,100} = x'_{5,100} m_c = 2,55 \ 22,2 \ 5^{0,269} = 87 mm$$

Esempio B - Per la località Raddusa, non dotata di stazione di misura, (long = 2° , lat = 37° 28) si determini la

Fig. 4b: carta delle iso-n.

"pioggia di progetto" di tempo di ritorno T=20 anni e durata 4 ore. Il pluviogramma sia costituito da elementi di durata 1 ora.

1 - In base alle coordinate della località considerata, si deduce che la sottozona omogenea è quella denominata C per la quale vale l'espressione (13c) della curva di crescita. I valori a ed n della (17), dedotti dalle figg. 4a,b, valgono rispettivamente

$$a = 28 \text{ mm}$$
 $n = 0.30$

2 - con i dati assunti al punto precedente si può procedere al calcolo degli elementi del pluviogramma $x = x_t - x_{t-1}$ così come mostrato nella tabella seguente

7 _{f-1} COO1 C	Control of the contro	ito itelia itic		
t [ore]	x' _t	$m_{c}(t)$	X_{t}	X
1	1,9327	28,0	54,1	54,1
2	1,9320	34,5	66,6	12,5
3	1,9322	38,9	75,2	8,6
4	1,9334	42,4	82,0	6,8

Il pluviogramma di progetto potrà essere costruito disponendo nell'ordine voluto (crescente, decrescente, triangolare, casuale) i valori x riportati nell'ultima colonna della tabella.

6. CONCLUSIONI

La determinazione indiretta delle portate di piena nelle reti idrografiche naturali o artificiali, necessita la valutazione della "pioggia di progetto". Lo strumento a tal fine più usato è la curva di probabilità pluviometrica CPP per la quale è necessaria una preliminare identificazione del modello probabilistico delle piogge brevi.

Con il presente lavoro si sono volute determinare le equazioni delle CPP relative al territorio siciliano usando una procedura di tipo regionale; in particolare il modello probabilistico regionale è stato adattato alle serie dei massimi annuali delle piogge di breve durata registrate nelle stazioni pluviografiche siciliane. La scelta

del modello è legata alla sua particolare capacità di tener conto dell'esistenza di valori estremamente più elevati degli altri (outliers) che non possono essere trascurati nelle pratiche applicazioni. Il territorio siciliano è stato suddiviso in tre sottozone omogenee e per ciascuna di esse è stata dedotta una semplice relazione approssimante la legge inversa delld TCEV, che lega la variabile altezza di pioggia adimensionalizzata rispetto la media della legge di distribuzione con la durata ed il tempo di ritorno. Tali espressioni, una volta definito il valore di μ che coincide con la media campionaria m, rappresentano proprio le curve di probabilità pluviometrica. Verificato che per ciascuna stazione pluviografica sussiste una relazione monomia tra la media m_e e la durata, vengono forniti i due parametri della suddetta relazione per ciascuna delle stazioni pluviografiche siciliane. Per la valutazione dei due parametri nei siti sprovvisti di stazioni di misura, sono state redatte due carte in cui sono tracciate le linee ad egual valore degli stessi. In conclusione, sia per le singole stazioni pluviografiche (tab.I) sia per i siti privi di osservazione (figg. 4a,b), con le indicazioni fornite nella memoria è possibile stabilire in maniera agevole, adoperando le (13) e le (15), l'equazione della CPP.

Tab I: Valori delle costanti a ed n della (15) per le stazioni pluviografiche siciliane.

codice	Stazione	Bacino di appartenenza	a	n
1	Monforte S.Giorgio	Niceto	35,9	0,3391
2	Milazzo	tra Muto e Mela	30,3	0,2208
3	Castroreale	Longano	27,4	0,4470
4	Montalbano Elicona	Mazzarà	26,2	0,4255
5	Tindari	tra Mazzara eTimeto	26,5	0,2977
6	S. Piero Patti	Timeto	28,3	0,3369
7	Capo d'Orlando	tra Naso e Zappulla	20,5	0,2934
8	Tortorici	Zappulla	28,4	0,3347
9	Alcara Li Fusi	Rosmarino	23,2	0,3970
10	Sanfratello	Inganno	21,9	0,3723
11	S. Stefano di Camastra	S. Stefano	26,7	0,2560
12	Castelbuono	Pollina	25,6	0,3451
13	Isnello	Pollina	25,0	0,4109
14	Cefalù	Pollina	27,3	0,2827
15	Collesano	Roccella	28,1	0,3880
16	Caltavuturo	Imera Settentrionale	20,4	0,4252

codice	Stazione	Bacino di appartenenza	a	n
17	Gioia (fattoria)	Torto	20,5	0,3147
18	Termini Imerese	tra Torto e S. leonardo	30,5	0,2635
19	Imbriaca	S. Leonardo	22,6	0,3567
20	Vicari	S. Leonardo	22,5	0,3205
21	Campofelise di Fitalia	S. Leonardo	22,9	0,2244
22	Mezzoiuso	S. Leonardo	20,6	0,3415
23	Sambuchi	S. Leonardo	19,5	0,3172
24	Caccamo	S. Leonardo	22,0	0,3414
25	Ciminna	S. Leonardo	20,8	0,3529
26	Monumentale	S. Leonardo	29,3	0,2608
27	Turdiepi (fattoria)	Eleuterio	21,6	0,3511
28	Lupo	Eleuterio	24,9	0,28,19
29	Ficuzza	Eleuterio	22,2	0,3088
30	Ficuzza bosco	Eleuterio	24,1	0,3792
31	Marineo	Eleuterio	27,4	0,2979
32	Risalaimi	Eleuterio	24,9	0,3272
33	Misilmeri	Eleuterio	21,0	0,3054
34	Pioppo	Oreto	27,4	0,4032
35	Altofonte	Oreto	25,0	0,3567
36	Romitello	tra Oreto e Giancaldara	30,1	0,2972
37	S. Martino delle Scale	tra Oreto e Giancaldara	28,2	0,3327
38	Monte Pellegrino	tra Oreto e Giancaldara	29,5	0,2733
39.	Partinico	tra Oreto e Giancaldara	21,2	0,3120
40	Palermo Ist. Zoot.	tra Oreto e Giancaldara	25,1	0,2928
41	Palermo Serv. Idr.	tra Oreto e Giancaldara	28,7	0,3143
42	Palermo Oss. Astr.	tra Oreto e Giancaldara	22,2	0,2687
43	Palermo Ist. Cast.	tra Oreto e Giancaldara	23,2	0,3119
44	Isola delle Femmine	tra Oreto e Giancaldara	21,7	0,2968
45	Ginestra	Giancaldara	27,9	0,3874
46	S. Giuseppe Jato	Giancaldara	25,3	0,28,36
47	Fellamonica	Giancaldara	26,9	0,3149
48	Calatafimi	S. Bartolomeo	21,1	0,3158
49	Specchia	tra S. Bartolomeo e Birgi	22,0	0,2230
50	Lentina	tra S. Bartolomeo e Birgí	29,7	0,2693
51	S. Andrea di Bonagia	tra S. Bartolomeo e Birgi	29,4	0,2605
52	Trapani	tra S. Bartolomeo e Birgi	24,9	0,2837
53	Castellamare del Golfo	tra S. Bartolomeo e Birgi	20,3	0,2634
54	Capo S. Vito	tra S. Bartolomeo e Birgi	17,6	0,2804
55	Fastaia	Birgi	21,3	0,2548

codice	Stazione	Bacino di appartenenza	a	n
56	La Chinea	Birgi	27,8	0,2079
57	S. Giorgio	Birgi	20,2	0,2469
58	Borgo Fazio	Birgi	23,6	0,2145
59	Birgi Nuovo	Birgi	29,1	0,2398
60	Ciaulo	Mazaro	33,4	0,1463
61	Marsala	Mazaro	30,4	0,2325
62	Mazzara del Vallo	tra Mazaro e Arena	29,5	0,2421
63	Partanna	Modione	26,7	0,2927
64	Castelvetrano	Modione	24,7	0,2596
65	Piana degli Albanesi	Belice	21,7	0,4126
66	Casa Dingoli	Belice	25,7	0,4020
67	S. Cristina Gela	Belice	24,5	0,3835
68	Piana dei Greci M.	Belice	22,4	0,3940
69	Piana dei Greci P.	Belice	24,4	0,4398
70	Tagliavia	Belice	23,8	0,1873
71	Corleone	Belice	20,8	0,2980
72	Roccamena	Belice	19,6	0,2938
73	Gibellina	Belice	21,8	0,2584
74	Montevago	Belice	34,6	0,2441
75	S. Margherita Belice	Belice	25,5	0,2296
76	Sciacca	tra Carboi e Verdura	28,3	0,2694
77	Caltabellotta	tra Carboi e Verdura	30,4	0,2777
78	Arancio	Carboi	26,4	0,2115
79	Piano del Leone	Verdura	25,2	0,3369
80	Palazzo Adriano	Verdura	26,9	0,3616
81	Chiusa Sclafani	Verdura	28,8	0,3318
82	Burgio	Verdura	29,5	0,2667
83	S. Stefano di Quisquina	Magazzolo	27,6	0,4230
84	Bivona	Magazzolo	25,8	0,3218
85	Lercara Friddi	Platani	20,6	0,3083
86	Le Piane	Platani	27,3	0,3046
87	Carcaciotto	Platani	29,0	0,2347
88	Platani (diga)	Platani	24,5	0,3403
89	Castronovo di Sicilia	Platani	23,5	0,3708
90	Casteltermini	Platani	22,0	0,3118
91	S. Caterina Villarmosa	Platani	25,6	0,2518
92	Valledolmo	Platani	24,6	0,2316
93	Marianopoli	Platani	28,9	0,2955
	mananopon	i iaidH	40,7	U,3339

codice	Stazione	Bacino di appartenenza	a	n
95	S. Biagio Platani	Platani	28,7	0,2808
96	Agrigento	Platani	30,3	0,2485
97	Palma di Montechiaro	S. Leone	23,7	0,2465
98	Petralia Sottana	Palma	23,6	0,3674
99	Capodarso	Imera Meridionale	32,2	0,1771
100	Enna	Imera Meridionale	30,6	0,4012
101	Villadoro	Imera Meridionale	25,9	0,3146
102	Villarosa	Imera Meridionale	26,6	0,2875
103	Caltanissetta (G. Civile)	Imera Meridionale	28,1	0,2588
104	Pietraperzia	Imera Meridionale	33,4	0,2100
105	Sommatino	Imera Meridionale	26,2	0,3021
106	Riesi	Imera Meridionale	28,4	0,2395
107	Ravanusa	Imera Meridionale	36,0	0,2050
108	Mangiaricotta	Imera Meridionale	25,4	0,2356
109	Deliella	Imera Meridionale	36,5	0,2210
110	Desusino	Imera Meridionale	31,9	0,2573
111	Mazzarino	Imera Meridionale	25,9	0,3054
112	Comunelli (diga)	Comunelli	30,1	0,1985
113	Gela	tra Comunelli e Gela	29,8	0,1845
114	Piazza Armerina	Gela	27,7	0,3346
115	Diga Disueri	Gela	15,9	0,3217
116	Monterosso	Acate	27,1	0,2715
117	Licodia Eubea	Acate	28,6	0,2411
118	Vizzini	Acate	21,0	0,2983
119	Vittoria	Ippari	29,9	0,2345
120	Ragusa	Irminio	28,0	0,3213
121	Modica	Scicli	25,2	0,3232
122	Castelluccio	Tellaro	38,7	0,2956
123	Noto	Noto	32,5	0,3423
124	Melilli	Anapo	30,8	0,3305
125	Palazzolo Acreide	Anapo	27,6	0,3587
126	Presa S. Nicola	Anapo	29,7	0,4174
127	Siracusa	Anapo	32,3	0,2909
128	Augusta	Anapo	38,9	0,2975
129	Carlentini	Lentini	27,2	0,4573
130	Lentini città	Lentini	32,4	0,3698
131	Lentini bonifica	Lentini	38,3	0,3644
132	Maniaci	Simeto	17,6	0,2845
133	Buffali	Simeto	27,1	0,3123

codice	Stazione	Bacino di appartenenza	a	n
134	Cesarò	Simeto	27,3	0,2578
135	Troina	Simeto	25,9	0,3697
136	Ancipa	Simeto	27,3	0,3390
137	Maletto	Simeto	25,6	0,2288
138	Bronte	Simeto	22,1	0,2777
139	Borgonuovo	Simeto	24,4	0,2854
140	Nicosia	Simeto	28,0	0,3676
141	Capizzi	Simeto	33,2	0,251
142	Cerami	Simeto	28,2	0,2699
143	Salamone	Simeto	25,0	0,2680
144	Gagliano Castelferrato	Simeto	22,4	0,3448
145	Agira	Simeto	24,8	0,3448
146	Ragalna	Simeto	22,0	0,3930
147	Centuripe	Simeto	20,0	0,4075
148	Adrano	Simeto	27,2	0,273
149	Paternò	Simeto	25,3	0,297
150	Simeto	Simeto	32,7	0,331
151	Leonforte	Simeto	31,1	0,299
152	Valguarnera	Simeto	25,9	0,409
153	Torricchia	Simeto	19,7	0,294
154	Raddusa	Simeto	24,0	0,252
155	Caltagirone	Simeto	25,0	0,267
156	Mineo	Simeto	30,2	0,314
157	Ramacca	Simeto	31,0	0,276
158	Zafferana Etnea	Simeto	37,4	0,487
159	Linguaglossa	Simeto	35,1	0,447
160	Viagrande	Simeto	39,1	0,351
161	Piedimonte Etneo	Simeto	35,8	0,355
162	Acireale	Simeto	41,5	0,345
163	Catania (G. Civile)	Simeto	32,3	0,326
164	Catania Osservatorio	Simeto	43,3	0,353
165	Randazzo	Simeto	27,8	0,375
166	Francavilla di Sicilia	Alcantara	41,0	0,422
167	Alcantara	Alcantara	33,0	0,321
168	Taormina	Alcantara	40,9	0,299
169	Camaro	Fiumedinisi	38,5	0,303
170	Messina	Fiumedinisi	33,8	0,259
171	Ganzirri	Fiumedinisi	34,4	0,212
172	Aliterme	Fiumedinisi	32,7	0,2764

BIBLIOGRAFIA

- l) ARNELL N.W., GABRIELE S.: The Performance of the two-component extreme value distribution in regional flood frequency analysis. Water Resource Research, n. 24, 1988.
- 2) ARNELL N.W., GABRIELE S.: Statistical properties of the hierarchical regional TCEV model with heterogeneous regions. Atti del XXI Convegno di Idraulica e Costruzioni Idrauliche, L'Aquila, settembre 1988.
- 3) BERAN M., HOSKING J.R.M., ARNELL N.: Comment on "Two component extreme value distribution for flood frequency analysis" by F.Rossi, M. Fiorentino e P. Versace, Water Resource Research, n. 22, 1986.
- 4) CANNAROZZO M., D'ASARO F., FERRO V.: Analisi regionale dei massimi annuali delle piogge di breve durata per il territorio siciliano; in corso di pubblicazione sulla Rivista Idrotecnica.
- 5) FERRARI E.: Modelli idrologici per lo studio delle massime altezze di pioggia giornaliere. Un'applicazione al caso della Sicilia. Tesi di Laurea non pubblicata, Università della Calabria, Cosenza.
- 6) FERRARI E. GABRIELE S., VERSACE P.: L'analisi dei massimi idrologici in Calabria. Allegato C al Rapporto 1987 del Gruppo Nazionale Difesa dalle Catastrofi Idrogeologiche, 1987.
- 7) FIORENTINO M., GABRIELE S, VERSACE P.: Stima della pioggia di progetto per il proporzionamento delle fognature pluviali. Un modello regionale. Atti del Seminario sui "Deflussi Urbani", Cosenza, 1984.
- 8) FIORENTINO M., GABRIELE S.: Distribuzione TCEV: metodi di stima dei parametri e proprietà statistiche degli stimatori. Geodata, n. 25, 1985.
- 9) FIORENTINO M., GABRIELE S., ROSSI F., VERSACE P.: Regional flood frequency analysis using the two-component extreme value distribution. A key reference abstract. Excerpta, n. 2, 1987.
- 10) FIORENTINO M., VERSACE P., ROSSI F.: Regional flood frequency estimation using the two-component extreme value distribution. Hydrological Sciences Journal, 30, 1985.
- 11) ROSSI F., FIORENTINO M., VERSACE P.: Two-component extreme value distribution for flood frequency analysis. Water Resource Research, n. 20, 1984.
- 12) VERSACE P.: Valutazione delle piene. Previsione e prevenzione degli eventi idrologici estremi e loro controllo. Rapporto 1986, Gruppo Nazionale Difesa dalle Catastrofi Idrogeologiche, 1986.
- 13) VERSACE P.: Valutazione delle piene. Previsione e prevenzione degli eventi idrologici estremi e loro controllo. Rapporto 1987, Gruppo Nazionale Difesa dalle Catastrofi Idrogeologiche, 1987.
- 14) VERSACE P., FERRARI E., FIORENTINO M., GABRIELE S., ROS-SI F.: Valutazione delle piene in Calabria. Geodata, n. 30, Dicembre 1989.